A note on unexpectedly useful transferable skills for experimental physicists

Careers officers at universities often talk about transferrable skills when discussing options for job hunting undergraduate physicists. It’s true that many of the skills taught at degree level are invaluable across a broad range of professions. Nowadays, you’d be hard pressed to find to find a job that doesn’t value basic programming, data analysis or problem-solving skills, to mention a few. However, graduates that choose to stay in academia and embark on careers in experimental research may be surprised to learn of all the skills not taught in their degrees that will likely be essential in the coming years. Here, I would like to discuss a few of the skills that I wouldn’t have attributed to a physics PhD until they came in very handy during my first year. 

First of all, patience. This may seem obvious, but experimental research is not to be rushed for a multitude of reasons, not least because it can be extremely dangerous to do so. Pragmatically, it simply isn’t efficient to try and do things as quickly as possible; speedy experimentation will likely lead to mistakes being made, false or useless data being taken and inevitably, many hours being spent on re-doing all your work. Of course, this is far easier said than done. Experiments in undergraduate lab modules are often laid out for the students with minimal or sometimes comprehensive instructions, and rarely take longer to perform than 6 to 12 hours. At PhD level however, experiments can take weeks, months, even years if you’re continuing the work of a long line of past students (or your lab is cursed). Many hours will be spent watching vacuum chambers pump down only to realise there’s a leak, or that the thing you’re supposed to be testing in there is still sitting on the bench where you left it. Long days can be spent aligning beams, measuring fields or taking data to no avail; either because you’ve made an honest mistake, or the universe just doesn’t want to play fair. Days like this can be frustrating, and the temptation to rush things will be strong, but this will only beget more waiting in the end. In my experience, the trick to patience is positivity and productivity. When you’ve found a bolt missing, a leak in your system or a blocked laser beam, try to substitute “Oh God I have to start all over again” for “That could have been so much worse if I hadn’t just spotted it”. See these things as small wins as opposed to massive losses and not only will you have the motivation to correct things and crack on with your experiment, but you will feel better too. Finally, when you have lots of time because you’re waiting for something, fill it! If your data set takes hours to record, catch up on some reading, try that simulation you were supposed to do last week or write a blog post… If your mind is occupied on producing work, you shan’t have the time to feel frustrated when you’re waiting for something. Patience is a virtue, yes, but it’s also a skill and arguably the most useful one in research.

Second, there will undoubtedly be a day where you walk into the lab alone for the first time and something has gone very wrong. Perhaps some equipment that should be firmly attached to the experiment is not so firmly attached to the ground instead. Perhaps a wire has shorted, and all your magnets have stopped working or the air conditioning has malfunctioned, and everything is far too hot. Whatever the case may be, you’ll be on your own, you’ll be unsure of yourself and without crisis management skills things are only going to get worse. Experiments at undergraduate level are very unlikely to fail in a manner more dire than a student having to retake some data, but in research labs equipment is bigger, more specialised and in many cases more dangerous. Being able to identify the problem, assess whether or not you are capable of fixing it yourself and act on these assessments is vital for the sake of the experiment and in rare cases, for your safety. These are not always intuitive skills, and often aren’t covered at undergraduate level meaning PhD students may find themselves underprepared for such situations. The reality of experimental labs is that equipment will go wrong at some point, sometimes for good reasons, and sometimes just to spite you. Power supplies will trip, vacuum pumps will give up the ghost and anything that’s water cooled is most definitely going to flood the lab. The trick is not to panic, to remember that your supervisor chose you for good reason, to notify the right people and to roll your sleeves up and get mopping.

Finally, by the time you get to PhD level, the experiments you’ll be working on will be cutting edge and may even be at the forefront of your respective field. With specialism like this comes the need for custom built equipment and as a budding independent researcher, you might be expected to design and build it yourself. Being able to drill and tap holes, cut and file metal and assemble complex systems from mismatched components are all skills you will likely need in the lab. Undergraduate physics courses certainly provide some good experience here; students are expected to take some initiative in designing their experiments and assembling them. Wiring basic circuits, aligning interferometers, and constructing pendulums are common in undergrad labs and some courses offer complete experimental freedom by the end of third year. These courses in particular are excellent training for research at higher levels but are usually limited by time, funding and course learning objectives to go into workshop skills with any detail. Unless you took design at school, or are well versed in DIY, you’ll be at a disadvantage in a research lab. Thankfully, these skills can be picked up elsewhere and are fairly intuitive; a summer internship for instance is an excellent opportunity to learn these skills in a laboratory setting.   

What’s the take home message? Being an experimental physicist isn’t just about knowing your equations, being able to code or remembering if the cat in the box is alive or dead. Research requires skills from all walks of life to perform well and the most unexpected of things may be worth knowing. So, if you’re considering doing a PhD in an experimental physics, next time your mate buys a flat pack wardrobe, offer to help them assemble it. Next time all the lights go out in the house, find the fuse box and see if you can track down the dodgy component. And next time someone in your halls forgets to close the door on the washing machine and floods the kitchen, grab a mop and bucket and get stuck in. These are the makings of good housemates, good physicists and you never know when you might need one of these skills in a pinch.

– Sam (1st year PhD student)

The inspiration for this post.

EPJ D Topical Issue: Atomic, Molecular and Optical Techniques for Fundamental Physics

The European Journal of Physics is looking for submissions to a topical issue of EPJD on AMO Techniques for Fundamental Physics. The editors are interested in submissions from a broad range of research areas, including but not limited to: Precision tests of QED theory; searches for Dark Matter and Energy; Physics beyond the standard model and more. Submissions from any related topics are also welcome!

The primary motivation behind this issue is to probe the standard model for its weaknesses and open the floor for new ways to investigate fundamental physics and answer some of the most important big questions in physics. Contributors are encouraged to communicate their intention to submit as soon as possible by providing tentative titles and abstracts to the guest editors.

The Deadline for submissions is October 31st 2021

Submissions should be clearly identified as intended for the topical issue and papers will be published online as soon as they are accepted. More information for authors can be found here.

The guest editors for this special issue are:

David Cassidy, Dept of Physics and Astronomy, University College London, London WC1E 6BT UK d.cassidy@ucl.ac.uk

Jesús Pérez Ríos, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany and Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, USA jperezri@fhi-berlin.mpg.de

Randolf Pohl, Institut für Physik, Quanten-, Atom- und Neutronenphysik (QUANTUM), Staudingerweg 7, 05-619, D-55128 Mainz, Germany pohl@uni-mainz.de

Mingsheng Zhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, P.O.Box 71010, Wuhan 430071, China mszhan@wipm.ac.cn

More information and the full advertisement for this special issue can be found here.