Rydberg excitation in thermal Rydberg gases

This week we welcomed Dr. Weibin Li from the University of Nottingham who spoke about “Rydberg excitation in thermal Rydberg gases”. The abstract for this AMOPP seminar can be found below.

Rydberg excitation in thermal Rydberg gases

The creation of optical nonlinearities in atomic gases become a challenging task with increasing temperature, due to large Doppler effects. We study single photon excitation of electronically high-lying Rydberg states by nanosecond laser pulses that propagate in a high density thermal gas of alkali atoms. Fast Rabi flopping and strong Rydberg atom interactions, both in the order of GHz, overcome Doppler effects and dephasing due to thermal collisions between Rydberg electrons and surrounding atoms. The latter has not been taken into account appropriately so far. We show that a sizable dispersive nonlinearity is generated by strong interactions between Rydberg atoms. Despite the Rydberg optical nonlinearity, solitary propagation, i.e., self-induced transparency (SIT), of the light pulse can still occur. The existence of SIT allows to implement a conditional optical phase gate in the thermal gas through harvesting strong interactions. Our study paves the route to study nonlinear optics in thermal Rydberg gases and directly contributes to the current effort in realising scalable quantum information and communication devices with glass cell technologies.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s