The measurement postulates of QM are redundant

Lluis Masanes, Thomas Galley, Markus Müller

Quantum picture of reality

- We live in a superposition of worlds with copies of ourselves enjoying different lives.

Quantum picture of reality

- Atoms, electrons and photons are not actual reality, but states of knowledge.
- But then, what is reality?

Plan

- Next we look at the logical inner-structure of QM.
- Unveil the fact that the measurement postulates are a logical consequence of the rest of quantum postulates.
- That is, the measurement postulates are redundant.

Postulates of QT

States

$$
\psi \in \mathrm{P} \mathbb{C}^{d}
$$

Dynamics

$$
\psi \mapsto U \psi, \quad U \in \operatorname{SU}(d)
$$

Composite states

$$
\mathbb{C}^{d}=\mathbb{C}^{a} \otimes \mathbb{C}^{b}
$$

Measurements

$$
P(Q \mid \psi)=\langle\psi| Q|\psi\rangle, \quad 0 \leq Q \leq \mathbb{1}
$$

Postulates of QT

States

$$
\psi \in \mathrm{P} \mathbb{C}^{d}
$$

Dynamics

$$
\psi \mapsto U \psi, \quad U \in \operatorname{SU}(d)
$$

Composite states

$$
\mathbb{C}^{d}=\mathbb{C}^{a} \otimes \mathbb{C}^{b}
$$

Measurements

$$
P(Q \mid \psi)=\langle\psi| Q|\psi\rangle, \quad 0 \leq Q \leq \mathbb{1}
$$

Postulates of QT

States

$$
\psi \in \mathrm{P} \mathbb{C}^{d}
$$

Dynamics

$$
\psi \mapsto U \psi, \quad U \in \operatorname{SU}(d)
$$

Composite states

$$
\mathbb{C}^{d}=\mathbb{C}^{a} \otimes \mathbb{C}^{b}
$$

Measurements

$$
P(\mathbf{f} \mid \psi)=\mathbf{f}(\psi) \quad \mathbf{f} \in \mathcal{F}_{d}
$$

Example 1

$$
P\left(\varphi_{i} \mid \psi\right)=\frac{\left|\left\langle\varphi_{i} \mid \psi\right\rangle\right|^{4}}{\sum_{j}\left|\left\langle\varphi_{j} \mid \psi\right\rangle\right|^{4}}
$$

Example 2

$$
\mathbf{f}_{i}(\varphi)=\operatorname{tr}\left(F_{i}|\varphi\rangle\left\langle\left.\varphi\right|^{\otimes 2}\right) \quad \sum_{i=1}^{n} F_{i}=P_{+}^{a}\right.
$$

Properties of \mathcal{F}_{d}

$$
\begin{aligned}
& \mathbf{f}: \mathrm{P}^{d} \rightarrow[0,1] \\
& \mathbf{f}^{x} \in \mathcal{F}_{d} \Rightarrow \sum_{x} p_{x} \mathbf{f}^{x} \in \mathcal{F}_{d}
\end{aligned}
$$

$\mathrm{SU}(d)$ action $\quad U: \mathcal{F}_{d} \rightarrow \mathcal{F}_{d}$

$$
U: \mathbf{f}(\psi) \mapsto \mathbf{f}(U \psi)
$$

Alternative measurement postulate \rightarrow alternative $S U(d)$ representation

Properties of \mathcal{F}_{d}

$\star: \mathcal{F}_{a} \times \mathcal{F}_{b} \rightarrow \mathcal{F}_{a b}$
$(\mathbf{f} \star \mathbf{g})(\psi \otimes \phi)=\mathbf{f}(\psi) \mathbf{g}(\phi)$
$\left(\sum_{x} p_{x} \mathbf{f}^{x}\right) \star \mathbf{g}=\sum_{x} p_{x}\left(\mathbf{f}^{x} \star \mathbf{g}\right)$
$(\mathbf{f} \circ U) \star \mathbf{g}=(\mathbf{f} \star \mathbf{g}) \circ(U \otimes \mathbb{1})$
$(f \star g) \star h=f \star(g \star h)$

Properties of \mathcal{F}_{d}

Assumption (possibility of state estimation). Each finite-dimensional system \mathbb{C}^{d} has a finite list of outcomes $\mathbf{f}^{1}, \ldots, \mathbf{f}^{k} \in \mathcal{F}_{d}$ such that knowing their value on any ensemble $\left(\psi_{r}, p_{r}\right)$ allows to calculate any other OPF $\mathbf{g} \in$ \mathcal{F}_{d} on the ensemble $\left(\psi_{r}, p_{r}\right)$.

Theorem (measurement). The only family of OPF sets $\mathcal{F}_{2}, \mathcal{F}_{3}, \mathcal{F}_{4}, \ldots$ and \mathcal{F}_{∞} equipped with $a \star$-product satisfying the "possibility of state estimation" assumption and conditions (7-14), has OPFs and \star-product of the form

$$
\begin{align*}
& \mathbf{f}(\varphi)=\langle\varphi| F|\varphi\rangle \tag{15}\\
& (\mathbf{f} \star \mathbf{g})(\psi)=\langle\psi| F \otimes G|\psi\rangle \tag{16}
\end{align*}
$$

for all $\varphi \in \mathbb{C}^{a}$ and $\psi \in \mathbb{C}^{a} \otimes \mathbb{C}^{b}$, where the \mathbb{C}^{a}-operator F satisfies $0 \leq F \leq \mathbb{1}$, and analogously for G.

Postulate (post-measurement state-update rule). Each outcome is represented by a completely-positive linear map Λ related to the operator Q via

$$
\begin{equation*}
\operatorname{tr} \Lambda(|\psi\rangle\langle\psi|)=\langle\psi| Q|\psi\rangle \tag{2}
\end{equation*}
$$

for all ψ. The post-measurement state after outcome Λ is

$$
\begin{equation*}
\rho=\frac{\Lambda(|\psi\rangle\langle\psi|)}{\operatorname{tr} \Lambda(|\psi\rangle\langle\psi|)} . \tag{3}
\end{equation*}
$$

A (full) measurement is represented by the maps corresponding to its outcomes $\Lambda_{1}, \ldots, \Lambda_{n}$ whose sum $\sum_{i=1}^{n} \Lambda_{i}$ is a trance-preserving map.

Conclusions

- The quantum measurement postulate is the only possibility that is compatible with the dynamical part of QM.
- Hence, the content of the measurement postulate does not need to be postulated.

Conclusions

- This is a repeated pattern in the history of physics.
- Example 1: the rebranding of the symmetrization postulate as the spin-statistics theorem.
- Example 2: the derivation of the laws of thermodynamics form the principles of mechanics.

