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• We live in a superposition of worlds with copies of 
ourselves enjoying different lives. 

Quantum picture of reality



• Atoms, electrons and photons are not actual reality, 
but states of knowledge. 

• But then, what is reality?

Quantum picture of reality



• Next we look at the logical inner-structure of QM. 

• Unveil the fact that the measurement postulates are 
a logical consequence of the rest of quantum 
postulates. 

• That is, the measurement postulates are redundant.

Plan



Postulates of QT
States

1

I. PRESENTATION

P (Q| ) = h |Q| i (1)

0  Q  (2)

 2 PCd
(3)

U 2 SU(d) (4)

 7! U (5)

Fd = {P (outcome| ) : 8 outcome} (6)

f 2 Fd (7)

f : PCd ! [0, 1] (8)

U : Fd ! Fd linear (9)

U : RFd ! RFd linear (10)

U : f 7! f � U�1
continuous and linear (11)

II. CONSTRUCTION OF Dd
j , ITS BRANCHING

RULES, AND THE SUPPORT OF PRODUCT
STATES

A. Explicit construction of Dd
n

The projector onto the symmetric subspace of (Cd
)
⌦n

is

P+ =
1

n!

X

⇡

⇡ , (12)

where ⇡ runs over all permutations of n objects, and

acts by permuting the factor spaces of (Cd
)
⌦n

. Let Md
n

be the space of complex matrices acting on (Cd
)
⌦j

whose

support is contained in the symmetric subspace: S+M =

MS+ = M for all M 2 Md
n. Note that Md

n
⇠= Sym

nCd⌦
Sym

nCd⇤
. We define a linear action of SU(d) on Md

n as

md
n(U)M = U⌦nMU⌦n† . (13)

Also, we define the linear map Id
n : Md

n ! Md
n�1 as

Id
n[M ] = tr1M , (14)

where tr1 denotes the trace over the first factor in (Cd
)
⌦n

.

Note that, by symmetry, the partial trace is independent

on the choice of factor: tr1M = triM for all i. From

now on, wherever is clear, we leave the dependence on d
implicit. Because the map In commutes with the action

of SU(d)

In[mn(U)M ] = mn�1(U)In[M ] , (15)

its kernel is a subrepresentation of Mn that we call

Dn. It is proven in [1] that this representation is irre-

ducible. This implies that the subspace Dn ✓ Mn can

be generated by the action of the group mn(U) on a sin-

gle element vn 2 Dn. We can take this element to be

vj = |0ih1|⌦j 2 Mj , where |0i, |1i 2 Cd
are orthogonal

h0|1i = 0, which guarantees that In[vn] = 0.

Because Ij is surjective, the complement of Dj ✓ Mj

is isomorphic to Mj�1, which contains the irreducible

representation Dj�1 ✓ Mj�1. Then, by Sure’s Lemma

we know that there is a representation Dj�1,j ✓ Mj that

is equivalent to Dj�1 ✓ Mj�1. Proceeding inductively,

we obtain the decomposition

Md
j =

jM

i=0

Dd
i,j . (16)

where each Di,j is irreducible and D0,j is trivial. In this

notation we have Dj,j = Dj and Di,j
⇠= Di,j0 for all j, j0 �

i.
As above, we can generate each subspace Di,j with

i  j, by finding an element vi,j 2 Di,j and exploiting the

irreducibility of the group action in Di,j . Let us consider

the following ansatz

vi,j = Sj

⇣
|0ih1|⌦i ⌦ ⌦(j�i)

⌘
Sj , (17)

and note that

Ij [vi,j ] / vi,j�1 2 Di,j�1 . (18)

Therefore, using (15), we prove our claim vi,j 2 Di,j .

B. Construction of Mj : Cd ! Md
j

The representation of pure states  7! Mj( ) must

preserve the dynamical structure of quantum theory

Mj(U ) = mj(U)Mj( ). This implies that the ma-

trix Mj( ) 2 Md
j must be invariant under the stabilizer

subgroup of  , and this happens for the choice

Mj( ) = | ih |⌦j . (19)

[Prove that this vector has support on all irreps (16) and

explain the a�ne equivalence with other possibilities.]

C. Construction of Dj : Cd ! Dd
j

The representation of pure states  7! Dj( ) is the

projection of the map Mj onto the subspace Dj . An

alternative way to obtain Dj is by noticing that it

must preserve the dynamical structure of quantum the-

oryDj(U ) = dj(U)Dj( ), where dj is the restriction of

the representation mj into the subspace Dj . This implies

that the matrix Dj( ) 2 Dd
j must be invariant under the

stabilizer subgroup of  , and this happens for the choice

Dj( ) = S
⇣ jM

i=0

xi | ih |⌦(j�i) ⌦ ⌦i
⌘
S , (20)

where xi are free parameters. Now, we can impose

Dj( ) 2 Dd
j via tr1Dj( ) = 0, and we obtain a unique

solution for the parameters x1, . . . , xj .

Dynamics

1

I. PRESENTATION

P (Q| ) = h |Q| i (1)

0  Q  (2)

 2 PCd
(3)

 7! U , U 2 SU(d) (4)

Fd = {P (outcome| ) : 8 outcome} (5)

f 2 Fd (6)

f : PCd ! [0, 1] (7)

U : Fd ! Fd linear (8)

U : RFd ! RFd linear (9)

U : f 7! f � U�1
continuous and linear (10)

II. CONSTRUCTION OF Dd
j , ITS BRANCHING

RULES, AND THE SUPPORT OF PRODUCT
STATES

A. Explicit construction of Dd
n

The projector onto the symmetric subspace of (Cd
)
⌦n

is

P+ =
1

n!

X

⇡

⇡ , (11)

where ⇡ runs over all permutations of n objects, and

acts by permuting the factor spaces of (Cd
)
⌦n

. Let Md
n

be the space of complex matrices acting on (Cd
)
⌦j

whose

support is contained in the symmetric subspace: S+M =

MS+ = M for all M 2 Md
n. Note that Md

n
⇠= Sym

nCd⌦
Sym

nCd⇤
. We define a linear action of SU(d) on Md

n as

md
n(U)M = U⌦nMU⌦n† . (12)

Also, we define the linear map Id
n : Md

n ! Md
n�1 as

Id
n[M ] = tr1M , (13)

where tr1 denotes the trace over the first factor in (Cd
)
⌦n

.

Note that, by symmetry, the partial trace is independent

on the choice of factor: tr1M = triM for all i. From

now on, wherever is clear, we leave the dependence on d
implicit. Because the map In commutes with the action

of SU(d)

In[mn(U)M ] = mn�1(U)In[M ] , (14)

its kernel is a subrepresentation of Mn that we call

Dn. It is proven in [1] that this representation is irre-

ducible. This implies that the subspace Dn ✓ Mn can

be generated by the action of the group mn(U) on a sin-

gle element vn 2 Dn. We can take this element to be

vj = |0ih1|⌦j 2 Mj , where |0i, |1i 2 Cd
are orthogonal

h0|1i = 0, which guarantees that In[vn] = 0.

Because Ij is surjective, the complement of Dj ✓ Mj

is isomorphic to Mj�1, which contains the irreducible

representation Dj�1 ✓ Mj�1. Then, by Sure’s Lemma

we know that there is a representation Dj�1,j ✓ Mj that

is equivalent to Dj�1 ✓ Mj�1. Proceeding inductively,

we obtain the decomposition

Md
j =

jM

i=0

Dd
i,j . (15)

where each Di,j is irreducible and D0,j is trivial. In this

notation we have Dj,j = Dj and Di,j
⇠= Di,j0 for all j, j0 �

i.
As above, we can generate each subspace Di,j with

i  j, by finding an element vi,j 2 Di,j and exploiting the

irreducibility of the group action in Di,j . Let us consider

the following ansatz

vi,j = Sj

⇣
|0ih1|⌦i ⌦ ⌦(j�i)

⌘
Sj , (16)

and note that

Ij [vi,j ] / vi,j�1 2 Di,j�1 . (17)

Therefore, using (14), we prove our claim vi,j 2 Di,j .

B. Construction of Mj : Cd ! Md
j

The representation of pure states  7! Mj( ) must

preserve the dynamical structure of quantum theory

Mj(U ) = mj(U)Mj( ). This implies that the ma-

trix Mj( ) 2 Md
j must be invariant under the stabilizer

subgroup of  , and this happens for the choice

Mj( ) = | ih |⌦j . (18)

[Prove that this vector has support on all irreps (15) and

explain the a�ne equivalence with other possibilities.]

C. Construction of Dj : Cd ! Dd
j

The representation of pure states  7! Dj( ) is the

projection of the map Mj onto the subspace Dj . An

alternative way to obtain Dj is by noticing that it

must preserve the dynamical structure of quantum the-

oryDj(U ) = dj(U)Dj( ), where dj is the restriction of

the representation mj into the subspace Dj . This implies

that the matrix Dj( ) 2 Dd
j must be invariant under the

stabilizer subgroup of  , and this happens for the choice

Dj( ) = S
⇣ jM

i=0

xi | ih |⌦(j�i) ⌦ ⌦i
⌘
S , (19)

where xi are free parameters. Now, we can impose

Dj( ) 2 Dd
j via tr1Dj( ) = 0, and we obtain a unique

solution for the parameters x1, . . . , xj .

Composite states

1

I. PRESENTATION

P (Q| ) = h |Q| i (1)

0  Q  (2)

 2 PCd
(3)

 7! U , U 2 SU(d) (4)

Fd = {P (outcome| ) : 8 outcome} (5)

f 2 Fd (6)

f : PCd ! [0, 1] (7)

U : Fd ! Fd linear (8)

U : RFd ! RFd linear (9)

U : f 7! f � U�1
continuous and linear (10)

Cd
= Ca ⌦ Cb

(11)

II. CONSTRUCTION OF Dd
j , ITS BRANCHING

RULES, AND THE SUPPORT OF PRODUCT
STATES

A. Explicit construction of Dd
n

The projector onto the symmetric subspace of (Cd
)
⌦n

is

P+ =
1

n!

X

⇡

⇡ , (12)

where ⇡ runs over all permutations of n objects, and

acts by permuting the factor spaces of (Cd
)
⌦n

. Let Md
n

be the space of complex matrices acting on (Cd
)
⌦j

whose

support is contained in the symmetric subspace: S+M =

MS+ = M for all M 2 Md
n. Note that Md

n
⇠= Sym

nCd⌦
Sym

nCd⇤
. We define a linear action of SU(d) on Md

n as

md
n(U)M = U⌦nMU⌦n† . (13)

Also, we define the linear map Id
n : Md

n ! Md
n�1 as

Id
n[M ] = tr1M , (14)

where tr1 denotes the trace over the first factor in (Cd
)
⌦n

.

Note that, by symmetry, the partial trace is independent

on the choice of factor: tr1M = triM for all i. From

now on, wherever is clear, we leave the dependence on d
implicit. Because the map In commutes with the action

of SU(d)

In[mn(U)M ] = mn�1(U)In[M ] , (15)

its kernel is a subrepresentation of Mn that we call

Dn. It is proven in [1] that this representation is irre-

ducible. This implies that the subspace Dn ✓ Mn can

be generated by the action of the group mn(U) on a sin-

gle element vn 2 Dn. We can take this element to be

vj = |0ih1|⌦j 2 Mj , where |0i, |1i 2 Cd
are orthogonal

h0|1i = 0, which guarantees that In[vn] = 0.

Because Ij is surjective, the complement of Dj ✓ Mj

is isomorphic to Mj�1, which contains the irreducible

representation Dj�1 ✓ Mj�1. Then, by Sure’s Lemma

we know that there is a representation Dj�1,j ✓ Mj that

is equivalent to Dj�1 ✓ Mj�1. Proceeding inductively,

we obtain the decomposition

Md
j =

jM

i=0

Dd
i,j . (16)

where each Di,j is irreducible and D0,j is trivial. In this

notation we have Dj,j = Dj and Di,j
⇠= Di,j0 for all j, j0 �

i.
As above, we can generate each subspace Di,j with

i  j, by finding an element vi,j 2 Di,j and exploiting the

irreducibility of the group action in Di,j . Let us consider

the following ansatz

vi,j = Sj

⇣
|0ih1|⌦i ⌦ ⌦(j�i)

⌘
Sj , (17)

and note that

Ij [vi,j ] / vi,j�1 2 Di,j�1 . (18)

Therefore, using (15), we prove our claim vi,j 2 Di,j .

B. Construction of Mj : Cd ! Md
j

The representation of pure states  7! Mj( ) must

preserve the dynamical structure of quantum theory

Mj(U ) = mj(U)Mj( ). This implies that the ma-

trix Mj( ) 2 Md
j must be invariant under the stabilizer

subgroup of  , and this happens for the choice

Mj( ) = | ih |⌦j . (19)

[Prove that this vector has support on all irreps (16) and

explain the a�ne equivalence with other possibilities.]

C. Construction of Dj : Cd ! Dd
j

The representation of pure states  7! Dj( ) is the

projection of the map Mj onto the subspace Dj . An

alternative way to obtain Dj is by noticing that it

must preserve the dynamical structure of quantum the-

oryDj(U ) = dj(U)Dj( ), where dj is the restriction of

the representation mj into the subspace Dj . This implies

that the matrix Dj( ) 2 Dd
j must be invariant under the

stabilizer subgroup of  , and this happens for the choice

Dj( ) = S
⇣ jM

i=0

xi | ih |⌦(j�i) ⌦ ⌦i
⌘
S , (20)

where xi are free parameters. Now, we can impose

Dj( ) 2 Dd
j via tr1Dj( ) = 0, and we obtain a unique

solution for the parameters x1, . . . , xj .

Measurements

1

I. PRESENTATION

P (Q| ) = h |Q| i, 0  Q  (1)

 2 PCd
(2)

 7! U , U 2 SU(d) (3)

Fd = {P (outcome| ) : 8 outcome} (4)

f 2 Fd (5)

f : PCd ! [0, 1] (6)

U : Fd ! Fd linear (7)

U : RFd ! RFd linear (8)

U : f 7! f � U�1
continuous and linear (9)

Cd
= Ca ⌦ Cb

(10)

II. CONSTRUCTION OF Dd
j , ITS BRANCHING

RULES, AND THE SUPPORT OF PRODUCT
STATES

A. Explicit construction of Dd
n

The projector onto the symmetric subspace of (Cd
)
⌦n

is

P+ =
1

n!

X

⇡

⇡ , (11)

where ⇡ runs over all permutations of n objects, and

acts by permuting the factor spaces of (Cd
)
⌦n

. Let Md
n

be the space of complex matrices acting on (Cd
)
⌦j

whose

support is contained in the symmetric subspace: S+M =

MS+ = M for all M 2 Md
n. Note that Md

n
⇠= Sym

nCd⌦
Sym

nCd⇤
. We define a linear action of SU(d) on Md

n as

md
n(U)M = U⌦nMU⌦n† . (12)

Also, we define the linear map Id
n : Md

n ! Md
n�1 as

Id
n[M ] = tr1M , (13)

where tr1 denotes the trace over the first factor in (Cd
)
⌦n

.

Note that, by symmetry, the partial trace is independent

on the choice of factor: tr1M = triM for all i. From

now on, wherever is clear, we leave the dependence on d
implicit. Because the map In commutes with the action

of SU(d)

In[mn(U)M ] = mn�1(U)In[M ] , (14)

its kernel is a subrepresentation of Mn that we call

Dn. It is proven in [1] that this representation is irre-

ducible. This implies that the subspace Dn ✓ Mn can

be generated by the action of the group mn(U) on a sin-

gle element vn 2 Dn. We can take this element to be

vj = |0ih1|⌦j 2 Mj , where |0i, |1i 2 Cd
are orthogonal

h0|1i = 0, which guarantees that In[vn] = 0.

Because Ij is surjective, the complement of Dj ✓ Mj

is isomorphic to Mj�1, which contains the irreducible

representation Dj�1 ✓ Mj�1. Then, by Sure’s Lemma

we know that there is a representation Dj�1,j ✓ Mj that

is equivalent to Dj�1 ✓ Mj�1. Proceeding inductively,

we obtain the decomposition

Md
j =

jM

i=0

Dd
i,j . (15)

where each Di,j is irreducible and D0,j is trivial. In this

notation we have Dj,j = Dj and Di,j
⇠= Di,j0 for all j, j0 �

i.
As above, we can generate each subspace Di,j with

i  j, by finding an element vi,j 2 Di,j and exploiting the

irreducibility of the group action in Di,j . Let us consider

the following ansatz

vi,j = Sj

⇣
|0ih1|⌦i ⌦ ⌦(j�i)

⌘
Sj , (16)

and note that

Ij [vi,j ] / vi,j�1 2 Di,j�1 . (17)

Therefore, using (14), we prove our claim vi,j 2 Di,j .

B. Construction of Mj : Cd ! Md
j

The representation of pure states  7! Mj( ) must

preserve the dynamical structure of quantum theory

Mj(U ) = mj(U)Mj( ). This implies that the ma-

trix Mj( ) 2 Md
j must be invariant under the stabilizer

subgroup of  , and this happens for the choice

Mj( ) = | ih |⌦j . (18)

[Prove that this vector has support on all irreps (15) and

explain the a�ne equivalence with other possibilities.]

C. Construction of Dj : Cd ! Dd
j

The representation of pure states  7! Dj( ) is the

projection of the map Mj onto the subspace Dj . An

alternative way to obtain Dj is by noticing that it

must preserve the dynamical structure of quantum the-

oryDj(U ) = dj(U)Dj( ), where dj is the restriction of

the representation mj into the subspace Dj . This implies

that the matrix Dj( ) 2 Dd
j must be invariant under the

stabilizer subgroup of  , and this happens for the choice

Dj( ) = S
⇣ jM

i=0

xi | ih |⌦(j�i) ⌦ ⌦i
⌘
S , (19)

where xi are free parameters. Now, we can impose

Dj( ) 2 Dd
j via tr1Dj( ) = 0, and we obtain a unique

solution for the parameters x1, . . . , xj .



Postulates of QT
States

1

I. PRESENTATION

P (Q| ) = h |Q| i (1)

0  Q  (2)

 2 PCd
(3)

U 2 SU(d) (4)

 7! U (5)

Fd = {P (outcome| ) : 8 outcome} (6)

f 2 Fd (7)

f : PCd ! [0, 1] (8)

U : Fd ! Fd linear (9)

U : RFd ! RFd linear (10)

U : f 7! f � U�1
continuous and linear (11)

II. CONSTRUCTION OF Dd
j , ITS BRANCHING

RULES, AND THE SUPPORT OF PRODUCT
STATES

A. Explicit construction of Dd
n

The projector onto the symmetric subspace of (Cd
)
⌦n

is

P+ =
1

n!

X

⇡

⇡ , (12)

where ⇡ runs over all permutations of n objects, and

acts by permuting the factor spaces of (Cd
)
⌦n

. Let Md
n

be the space of complex matrices acting on (Cd
)
⌦j

whose

support is contained in the symmetric subspace: S+M =

MS+ = M for all M 2 Md
n. Note that Md

n
⇠= Sym

nCd⌦
Sym

nCd⇤
. We define a linear action of SU(d) on Md

n as

md
n(U)M = U⌦nMU⌦n† . (13)

Also, we define the linear map Id
n : Md

n ! Md
n�1 as

Id
n[M ] = tr1M , (14)

where tr1 denotes the trace over the first factor in (Cd
)
⌦n

.

Note that, by symmetry, the partial trace is independent

on the choice of factor: tr1M = triM for all i. From

now on, wherever is clear, we leave the dependence on d
implicit. Because the map In commutes with the action

of SU(d)

In[mn(U)M ] = mn�1(U)In[M ] , (15)

its kernel is a subrepresentation of Mn that we call

Dn. It is proven in [1] that this representation is irre-

ducible. This implies that the subspace Dn ✓ Mn can

be generated by the action of the group mn(U) on a sin-

gle element vn 2 Dn. We can take this element to be

vj = |0ih1|⌦j 2 Mj , where |0i, |1i 2 Cd
are orthogonal

h0|1i = 0, which guarantees that In[vn] = 0.

Because Ij is surjective, the complement of Dj ✓ Mj

is isomorphic to Mj�1, which contains the irreducible

representation Dj�1 ✓ Mj�1. Then, by Sure’s Lemma

we know that there is a representation Dj�1,j ✓ Mj that

is equivalent to Dj�1 ✓ Mj�1. Proceeding inductively,

we obtain the decomposition

Md
j =

jM

i=0

Dd
i,j . (16)

where each Di,j is irreducible and D0,j is trivial. In this

notation we have Dj,j = Dj and Di,j
⇠= Di,j0 for all j, j0 �

i.
As above, we can generate each subspace Di,j with

i  j, by finding an element vi,j 2 Di,j and exploiting the

irreducibility of the group action in Di,j . Let us consider

the following ansatz

vi,j = Sj

⇣
|0ih1|⌦i ⌦ ⌦(j�i)

⌘
Sj , (17)

and note that

Ij [vi,j ] / vi,j�1 2 Di,j�1 . (18)

Therefore, using (15), we prove our claim vi,j 2 Di,j .

B. Construction of Mj : Cd ! Md
j

The representation of pure states  7! Mj( ) must

preserve the dynamical structure of quantum theory

Mj(U ) = mj(U)Mj( ). This implies that the ma-

trix Mj( ) 2 Md
j must be invariant under the stabilizer

subgroup of  , and this happens for the choice

Mj( ) = | ih |⌦j . (19)

[Prove that this vector has support on all irreps (16) and

explain the a�ne equivalence with other possibilities.]

C. Construction of Dj : Cd ! Dd
j

The representation of pure states  7! Dj( ) is the

projection of the map Mj onto the subspace Dj . An

alternative way to obtain Dj is by noticing that it

must preserve the dynamical structure of quantum the-

oryDj(U ) = dj(U)Dj( ), where dj is the restriction of

the representation mj into the subspace Dj . This implies

that the matrix Dj( ) 2 Dd
j must be invariant under the

stabilizer subgroup of  , and this happens for the choice

Dj( ) = S
⇣ jM

i=0

xi | ih |⌦(j�i) ⌦ ⌦i
⌘
S , (20)

where xi are free parameters. Now, we can impose

Dj( ) 2 Dd
j via tr1Dj( ) = 0, and we obtain a unique

solution for the parameters x1, . . . , xj .

Dynamics

1

I. PRESENTATION

P (Q| ) = h |Q| i (1)

0  Q  (2)

 2 PCd
(3)

 7! U , U 2 SU(d) (4)

Fd = {P (outcome| ) : 8 outcome} (5)

f 2 Fd (6)

f : PCd ! [0, 1] (7)

U : Fd ! Fd linear (8)

U : RFd ! RFd linear (9)

U : f 7! f � U�1
continuous and linear (10)

II. CONSTRUCTION OF Dd
j , ITS BRANCHING

RULES, AND THE SUPPORT OF PRODUCT
STATES

A. Explicit construction of Dd
n

The projector onto the symmetric subspace of (Cd
)
⌦n

is

P+ =
1

n!

X

⇡

⇡ , (11)

where ⇡ runs over all permutations of n objects, and

acts by permuting the factor spaces of (Cd
)
⌦n

. Let Md
n

be the space of complex matrices acting on (Cd
)
⌦j

whose

support is contained in the symmetric subspace: S+M =

MS+ = M for all M 2 Md
n. Note that Md

n
⇠= Sym

nCd⌦
Sym

nCd⇤
. We define a linear action of SU(d) on Md

n as

md
n(U)M = U⌦nMU⌦n† . (12)

Also, we define the linear map Id
n : Md

n ! Md
n�1 as

Id
n[M ] = tr1M , (13)

where tr1 denotes the trace over the first factor in (Cd
)
⌦n

.

Note that, by symmetry, the partial trace is independent

on the choice of factor: tr1M = triM for all i. From

now on, wherever is clear, we leave the dependence on d
implicit. Because the map In commutes with the action

of SU(d)

In[mn(U)M ] = mn�1(U)In[M ] , (14)

its kernel is a subrepresentation of Mn that we call

Dn. It is proven in [1] that this representation is irre-

ducible. This implies that the subspace Dn ✓ Mn can

be generated by the action of the group mn(U) on a sin-

gle element vn 2 Dn. We can take this element to be

vj = |0ih1|⌦j 2 Mj , where |0i, |1i 2 Cd
are orthogonal

h0|1i = 0, which guarantees that In[vn] = 0.

Because Ij is surjective, the complement of Dj ✓ Mj

is isomorphic to Mj�1, which contains the irreducible

representation Dj�1 ✓ Mj�1. Then, by Sure’s Lemma

we know that there is a representation Dj�1,j ✓ Mj that

is equivalent to Dj�1 ✓ Mj�1. Proceeding inductively,

we obtain the decomposition

Md
j =

jM

i=0

Dd
i,j . (15)

where each Di,j is irreducible and D0,j is trivial. In this

notation we have Dj,j = Dj and Di,j
⇠= Di,j0 for all j, j0 �

i.
As above, we can generate each subspace Di,j with

i  j, by finding an element vi,j 2 Di,j and exploiting the

irreducibility of the group action in Di,j . Let us consider

the following ansatz

vi,j = Sj

⇣
|0ih1|⌦i ⌦ ⌦(j�i)

⌘
Sj , (16)

and note that

Ij [vi,j ] / vi,j�1 2 Di,j�1 . (17)

Therefore, using (14), we prove our claim vi,j 2 Di,j .

B. Construction of Mj : Cd ! Md
j

The representation of pure states  7! Mj( ) must

preserve the dynamical structure of quantum theory

Mj(U ) = mj(U)Mj( ). This implies that the ma-

trix Mj( ) 2 Md
j must be invariant under the stabilizer

subgroup of  , and this happens for the choice

Mj( ) = | ih |⌦j . (18)

[Prove that this vector has support on all irreps (15) and

explain the a�ne equivalence with other possibilities.]

C. Construction of Dj : Cd ! Dd
j

The representation of pure states  7! Dj( ) is the

projection of the map Mj onto the subspace Dj . An

alternative way to obtain Dj is by noticing that it

must preserve the dynamical structure of quantum the-

oryDj(U ) = dj(U)Dj( ), where dj is the restriction of

the representation mj into the subspace Dj . This implies

that the matrix Dj( ) 2 Dd
j must be invariant under the

stabilizer subgroup of  , and this happens for the choice

Dj( ) = S
⇣ jM

i=0

xi | ih |⌦(j�i) ⌦ ⌦i
⌘
S , (19)

where xi are free parameters. Now, we can impose

Dj( ) 2 Dd
j via tr1Dj( ) = 0, and we obtain a unique

solution for the parameters x1, . . . , xj .

Composite states

1

I. PRESENTATION

P (Q| ) = h |Q| i (1)

0  Q  (2)

 2 PCd
(3)

 7! U , U 2 SU(d) (4)

Fd = {P (outcome| ) : 8 outcome} (5)

f 2 Fd (6)

f : PCd ! [0, 1] (7)

U : Fd ! Fd linear (8)

U : RFd ! RFd linear (9)

U : f 7! f � U�1
continuous and linear (10)

Cd
= Ca ⌦ Cb

(11)

II. CONSTRUCTION OF Dd
j , ITS BRANCHING

RULES, AND THE SUPPORT OF PRODUCT
STATES

A. Explicit construction of Dd
n

The projector onto the symmetric subspace of (Cd
)
⌦n

is

P+ =
1

n!

X

⇡

⇡ , (12)

where ⇡ runs over all permutations of n objects, and

acts by permuting the factor spaces of (Cd
)
⌦n

. Let Md
n

be the space of complex matrices acting on (Cd
)
⌦j

whose

support is contained in the symmetric subspace: S+M =

MS+ = M for all M 2 Md
n. Note that Md

n
⇠= Sym

nCd⌦
Sym

nCd⇤
. We define a linear action of SU(d) on Md

n as

md
n(U)M = U⌦nMU⌦n† . (13)

Also, we define the linear map Id
n : Md

n ! Md
n�1 as

Id
n[M ] = tr1M , (14)

where tr1 denotes the trace over the first factor in (Cd
)
⌦n

.

Note that, by symmetry, the partial trace is independent

on the choice of factor: tr1M = triM for all i. From

now on, wherever is clear, we leave the dependence on d
implicit. Because the map In commutes with the action

of SU(d)

In[mn(U)M ] = mn�1(U)In[M ] , (15)

its kernel is a subrepresentation of Mn that we call

Dn. It is proven in [1] that this representation is irre-

ducible. This implies that the subspace Dn ✓ Mn can

be generated by the action of the group mn(U) on a sin-

gle element vn 2 Dn. We can take this element to be

vj = |0ih1|⌦j 2 Mj , where |0i, |1i 2 Cd
are orthogonal

h0|1i = 0, which guarantees that In[vn] = 0.

Because Ij is surjective, the complement of Dj ✓ Mj

is isomorphic to Mj�1, which contains the irreducible

representation Dj�1 ✓ Mj�1. Then, by Sure’s Lemma

we know that there is a representation Dj�1,j ✓ Mj that

is equivalent to Dj�1 ✓ Mj�1. Proceeding inductively,

we obtain the decomposition

Md
j =

jM

i=0

Dd
i,j . (16)

where each Di,j is irreducible and D0,j is trivial. In this

notation we have Dj,j = Dj and Di,j
⇠= Di,j0 for all j, j0 �

i.
As above, we can generate each subspace Di,j with

i  j, by finding an element vi,j 2 Di,j and exploiting the

irreducibility of the group action in Di,j . Let us consider

the following ansatz

vi,j = Sj

⇣
|0ih1|⌦i ⌦ ⌦(j�i)

⌘
Sj , (17)

and note that

Ij [vi,j ] / vi,j�1 2 Di,j�1 . (18)

Therefore, using (15), we prove our claim vi,j 2 Di,j .

B. Construction of Mj : Cd ! Md
j

The representation of pure states  7! Mj( ) must

preserve the dynamical structure of quantum theory

Mj(U ) = mj(U)Mj( ). This implies that the ma-

trix Mj( ) 2 Md
j must be invariant under the stabilizer

subgroup of  , and this happens for the choice

Mj( ) = | ih |⌦j . (19)

[Prove that this vector has support on all irreps (16) and

explain the a�ne equivalence with other possibilities.]

C. Construction of Dj : Cd ! Dd
j

The representation of pure states  7! Dj( ) is the

projection of the map Mj onto the subspace Dj . An

alternative way to obtain Dj is by noticing that it

must preserve the dynamical structure of quantum the-

oryDj(U ) = dj(U)Dj( ), where dj is the restriction of

the representation mj into the subspace Dj . This implies

that the matrix Dj( ) 2 Dd
j must be invariant under the

stabilizer subgroup of  , and this happens for the choice

Dj( ) = S
⇣ jM

i=0

xi | ih |⌦(j�i) ⌦ ⌦i
⌘
S , (20)

where xi are free parameters. Now, we can impose

Dj( ) 2 Dd
j via tr1Dj( ) = 0, and we obtain a unique

solution for the parameters x1, . . . , xj .

Measurements

1

I. PRESENTATION

P (Q| ) = h |Q| i, 0  Q  (1)

 2 PCd
(2)

 7! U , U 2 SU(d) (3)

Fd = {P (outcome| ) : 8 outcome} (4)

f 2 Fd (5)

f : PCd ! [0, 1] (6)

U : Fd ! Fd linear (7)

U : RFd ! RFd linear (8)

U : f 7! f � U�1
continuous and linear (9)

Cd
= Ca ⌦ Cb

(10)

II. CONSTRUCTION OF Dd
j , ITS BRANCHING

RULES, AND THE SUPPORT OF PRODUCT
STATES

A. Explicit construction of Dd
n

The projector onto the symmetric subspace of (Cd
)
⌦n

is

P+ =
1

n!

X

⇡

⇡ , (11)

where ⇡ runs over all permutations of n objects, and

acts by permuting the factor spaces of (Cd
)
⌦n

. Let Md
n

be the space of complex matrices acting on (Cd
)
⌦j

whose

support is contained in the symmetric subspace: S+M =

MS+ = M for all M 2 Md
n. Note that Md

n
⇠= Sym

nCd⌦
Sym

nCd⇤
. We define a linear action of SU(d) on Md

n as

md
n(U)M = U⌦nMU⌦n† . (12)

Also, we define the linear map Id
n : Md

n ! Md
n�1 as

Id
n[M ] = tr1M , (13)

where tr1 denotes the trace over the first factor in (Cd
)
⌦n

.

Note that, by symmetry, the partial trace is independent

on the choice of factor: tr1M = triM for all i. From

now on, wherever is clear, we leave the dependence on d
implicit. Because the map In commutes with the action

of SU(d)

In[mn(U)M ] = mn�1(U)In[M ] , (14)

its kernel is a subrepresentation of Mn that we call

Dn. It is proven in [1] that this representation is irre-

ducible. This implies that the subspace Dn ✓ Mn can

be generated by the action of the group mn(U) on a sin-

gle element vn 2 Dn. We can take this element to be

vj = |0ih1|⌦j 2 Mj , where |0i, |1i 2 Cd
are orthogonal

h0|1i = 0, which guarantees that In[vn] = 0.

Because Ij is surjective, the complement of Dj ✓ Mj

is isomorphic to Mj�1, which contains the irreducible

representation Dj�1 ✓ Mj�1. Then, by Sure’s Lemma

we know that there is a representation Dj�1,j ✓ Mj that

is equivalent to Dj�1 ✓ Mj�1. Proceeding inductively,

we obtain the decomposition

Md
j =

jM

i=0

Dd
i,j . (15)

where each Di,j is irreducible and D0,j is trivial. In this

notation we have Dj,j = Dj and Di,j
⇠= Di,j0 for all j, j0 �

i.
As above, we can generate each subspace Di,j with

i  j, by finding an element vi,j 2 Di,j and exploiting the

irreducibility of the group action in Di,j . Let us consider

the following ansatz

vi,j = Sj

⇣
|0ih1|⌦i ⌦ ⌦(j�i)

⌘
Sj , (16)

and note that

Ij [vi,j ] / vi,j�1 2 Di,j�1 . (17)

Therefore, using (14), we prove our claim vi,j 2 Di,j .

B. Construction of Mj : Cd ! Md
j

The representation of pure states  7! Mj( ) must

preserve the dynamical structure of quantum theory

Mj(U ) = mj(U)Mj( ). This implies that the ma-

trix Mj( ) 2 Md
j must be invariant under the stabilizer

subgroup of  , and this happens for the choice

Mj( ) = | ih |⌦j . (18)

[Prove that this vector has support on all irreps (15) and

explain the a�ne equivalence with other possibilities.]

C. Construction of Dj : Cd ! Dd
j

The representation of pure states  7! Dj( ) is the

projection of the map Mj onto the subspace Dj . An

alternative way to obtain Dj is by noticing that it

must preserve the dynamical structure of quantum the-

oryDj(U ) = dj(U)Dj( ), where dj is the restriction of

the representation mj into the subspace Dj . This implies

that the matrix Dj( ) 2 Dd
j must be invariant under the

stabilizer subgroup of  , and this happens for the choice

Dj( ) = S
⇣ jM

i=0

xi | ih |⌦(j�i) ⌦ ⌦i
⌘
S , (19)

where xi are free parameters. Now, we can impose

Dj( ) 2 Dd
j via tr1Dj( ) = 0, and we obtain a unique

solution for the parameters x1, . . . , xj .



Postulates of QT
States

1

I. PRESENTATION

P (Q| ) = h |Q| i (1)

0  Q  (2)

 2 PCd
(3)

U 2 SU(d) (4)

 7! U (5)

Fd = {P (outcome| ) : 8 outcome} (6)

f 2 Fd (7)

f : PCd ! [0, 1] (8)

U : Fd ! Fd linear (9)

U : RFd ! RFd linear (10)

U : f 7! f � U�1
continuous and linear (11)

II. CONSTRUCTION OF Dd
j , ITS BRANCHING

RULES, AND THE SUPPORT OF PRODUCT
STATES

A. Explicit construction of Dd
n

The projector onto the symmetric subspace of (Cd
)
⌦n

is

P+ =
1

n!

X

⇡

⇡ , (12)

where ⇡ runs over all permutations of n objects, and

acts by permuting the factor spaces of (Cd
)
⌦n

. Let Md
n

be the space of complex matrices acting on (Cd
)
⌦j

whose

support is contained in the symmetric subspace: S+M =

MS+ = M for all M 2 Md
n. Note that Md

n
⇠= Sym

nCd⌦
Sym

nCd⇤
. We define a linear action of SU(d) on Md

n as

md
n(U)M = U⌦nMU⌦n† . (13)

Also, we define the linear map Id
n : Md

n ! Md
n�1 as

Id
n[M ] = tr1M , (14)

where tr1 denotes the trace over the first factor in (Cd
)
⌦n

.

Note that, by symmetry, the partial trace is independent

on the choice of factor: tr1M = triM for all i. From

now on, wherever is clear, we leave the dependence on d
implicit. Because the map In commutes with the action

of SU(d)

In[mn(U)M ] = mn�1(U)In[M ] , (15)

its kernel is a subrepresentation of Mn that we call

Dn. It is proven in [1] that this representation is irre-

ducible. This implies that the subspace Dn ✓ Mn can

be generated by the action of the group mn(U) on a sin-

gle element vn 2 Dn. We can take this element to be

vj = |0ih1|⌦j 2 Mj , where |0i, |1i 2 Cd
are orthogonal

h0|1i = 0, which guarantees that In[vn] = 0.

Because Ij is surjective, the complement of Dj ✓ Mj

is isomorphic to Mj�1, which contains the irreducible

representation Dj�1 ✓ Mj�1. Then, by Sure’s Lemma

we know that there is a representation Dj�1,j ✓ Mj that

is equivalent to Dj�1 ✓ Mj�1. Proceeding inductively,

we obtain the decomposition

Md
j =

jM

i=0

Dd
i,j . (16)

where each Di,j is irreducible and D0,j is trivial. In this

notation we have Dj,j = Dj and Di,j
⇠= Di,j0 for all j, j0 �

i.
As above, we can generate each subspace Di,j with

i  j, by finding an element vi,j 2 Di,j and exploiting the

irreducibility of the group action in Di,j . Let us consider

the following ansatz

vi,j = Sj

⇣
|0ih1|⌦i ⌦ ⌦(j�i)

⌘
Sj , (17)

and note that

Ij [vi,j ] / vi,j�1 2 Di,j�1 . (18)

Therefore, using (15), we prove our claim vi,j 2 Di,j .

B. Construction of Mj : Cd ! Md
j

The representation of pure states  7! Mj( ) must

preserve the dynamical structure of quantum theory

Mj(U ) = mj(U)Mj( ). This implies that the ma-

trix Mj( ) 2 Md
j must be invariant under the stabilizer

subgroup of  , and this happens for the choice

Mj( ) = | ih |⌦j . (19)

[Prove that this vector has support on all irreps (16) and

explain the a�ne equivalence with other possibilities.]

C. Construction of Dj : Cd ! Dd
j

The representation of pure states  7! Dj( ) is the

projection of the map Mj onto the subspace Dj . An

alternative way to obtain Dj is by noticing that it

must preserve the dynamical structure of quantum the-

oryDj(U ) = dj(U)Dj( ), where dj is the restriction of

the representation mj into the subspace Dj . This implies

that the matrix Dj( ) 2 Dd
j must be invariant under the

stabilizer subgroup of  , and this happens for the choice

Dj( ) = S
⇣ jM

i=0

xi | ih |⌦(j�i) ⌦ ⌦i
⌘
S , (20)

where xi are free parameters. Now, we can impose

Dj( ) 2 Dd
j via tr1Dj( ) = 0, and we obtain a unique

solution for the parameters x1, . . . , xj .

Dynamics

1

I. PRESENTATION

P (Q| ) = h |Q| i (1)

0  Q  (2)

 2 PCd
(3)

 7! U , U 2 SU(d) (4)

Fd = {P (outcome| ) : 8 outcome} (5)

f 2 Fd (6)

f : PCd ! [0, 1] (7)

U : Fd ! Fd linear (8)

U : RFd ! RFd linear (9)

U : f 7! f � U�1
continuous and linear (10)

II. CONSTRUCTION OF Dd
j , ITS BRANCHING

RULES, AND THE SUPPORT OF PRODUCT
STATES

A. Explicit construction of Dd
n

The projector onto the symmetric subspace of (Cd
)
⌦n

is

P+ =
1

n!

X

⇡

⇡ , (11)

where ⇡ runs over all permutations of n objects, and

acts by permuting the factor spaces of (Cd
)
⌦n

. Let Md
n

be the space of complex matrices acting on (Cd
)
⌦j

whose

support is contained in the symmetric subspace: S+M =

MS+ = M for all M 2 Md
n. Note that Md

n
⇠= Sym

nCd⌦
Sym

nCd⇤
. We define a linear action of SU(d) on Md

n as

md
n(U)M = U⌦nMU⌦n† . (12)

Also, we define the linear map Id
n : Md

n ! Md
n�1 as

Id
n[M ] = tr1M , (13)

where tr1 denotes the trace over the first factor in (Cd
)
⌦n

.

Note that, by symmetry, the partial trace is independent

on the choice of factor: tr1M = triM for all i. From

now on, wherever is clear, we leave the dependence on d
implicit. Because the map In commutes with the action

of SU(d)

In[mn(U)M ] = mn�1(U)In[M ] , (14)

its kernel is a subrepresentation of Mn that we call

Dn. It is proven in [1] that this representation is irre-

ducible. This implies that the subspace Dn ✓ Mn can

be generated by the action of the group mn(U) on a sin-

gle element vn 2 Dn. We can take this element to be

vj = |0ih1|⌦j 2 Mj , where |0i, |1i 2 Cd
are orthogonal

h0|1i = 0, which guarantees that In[vn] = 0.

Because Ij is surjective, the complement of Dj ✓ Mj

is isomorphic to Mj�1, which contains the irreducible

representation Dj�1 ✓ Mj�1. Then, by Sure’s Lemma

we know that there is a representation Dj�1,j ✓ Mj that

is equivalent to Dj�1 ✓ Mj�1. Proceeding inductively,

we obtain the decomposition

Md
j =

jM

i=0

Dd
i,j . (15)

where each Di,j is irreducible and D0,j is trivial. In this

notation we have Dj,j = Dj and Di,j
⇠= Di,j0 for all j, j0 �

i.
As above, we can generate each subspace Di,j with

i  j, by finding an element vi,j 2 Di,j and exploiting the

irreducibility of the group action in Di,j . Let us consider

the following ansatz

vi,j = Sj

⇣
|0ih1|⌦i ⌦ ⌦(j�i)

⌘
Sj , (16)

and note that

Ij [vi,j ] / vi,j�1 2 Di,j�1 . (17)

Therefore, using (14), we prove our claim vi,j 2 Di,j .

B. Construction of Mj : Cd ! Md
j

The representation of pure states  7! Mj( ) must

preserve the dynamical structure of quantum theory

Mj(U ) = mj(U)Mj( ). This implies that the ma-

trix Mj( ) 2 Md
j must be invariant under the stabilizer

subgroup of  , and this happens for the choice

Mj( ) = | ih |⌦j . (18)

[Prove that this vector has support on all irreps (15) and

explain the a�ne equivalence with other possibilities.]

C. Construction of Dj : Cd ! Dd
j

The representation of pure states  7! Dj( ) is the

projection of the map Mj onto the subspace Dj . An

alternative way to obtain Dj is by noticing that it

must preserve the dynamical structure of quantum the-

oryDj(U ) = dj(U)Dj( ), where dj is the restriction of

the representation mj into the subspace Dj . This implies

that the matrix Dj( ) 2 Dd
j must be invariant under the

stabilizer subgroup of  , and this happens for the choice

Dj( ) = S
⇣ jM

i=0

xi | ih |⌦(j�i) ⌦ ⌦i
⌘
S , (19)

where xi are free parameters. Now, we can impose

Dj( ) 2 Dd
j via tr1Dj( ) = 0, and we obtain a unique

solution for the parameters x1, . . . , xj .

Composite states

1

I. PRESENTATION

P (Q| ) = h |Q| i (1)

0  Q  (2)

 2 PCd
(3)

 7! U , U 2 SU(d) (4)

Fd = {P (outcome| ) : 8 outcome} (5)

f 2 Fd (6)

f : PCd ! [0, 1] (7)

U : Fd ! Fd linear (8)

U : RFd ! RFd linear (9)

U : f 7! f � U�1
continuous and linear (10)

Cd
= Ca ⌦ Cb

(11)

II. CONSTRUCTION OF Dd
j , ITS BRANCHING

RULES, AND THE SUPPORT OF PRODUCT
STATES

A. Explicit construction of Dd
n

The projector onto the symmetric subspace of (Cd
)
⌦n

is

P+ =
1

n!

X

⇡

⇡ , (12)

where ⇡ runs over all permutations of n objects, and

acts by permuting the factor spaces of (Cd
)
⌦n

. Let Md
n

be the space of complex matrices acting on (Cd
)
⌦j

whose

support is contained in the symmetric subspace: S+M =

MS+ = M for all M 2 Md
n. Note that Md

n
⇠= Sym

nCd⌦
Sym

nCd⇤
. We define a linear action of SU(d) on Md

n as

md
n(U)M = U⌦nMU⌦n† . (13)

Also, we define the linear map Id
n : Md

n ! Md
n�1 as

Id
n[M ] = tr1M , (14)

where tr1 denotes the trace over the first factor in (Cd
)
⌦n

.

Note that, by symmetry, the partial trace is independent

on the choice of factor: tr1M = triM for all i. From

now on, wherever is clear, we leave the dependence on d
implicit. Because the map In commutes with the action

of SU(d)

In[mn(U)M ] = mn�1(U)In[M ] , (15)

its kernel is a subrepresentation of Mn that we call

Dn. It is proven in [1] that this representation is irre-

ducible. This implies that the subspace Dn ✓ Mn can

be generated by the action of the group mn(U) on a sin-

gle element vn 2 Dn. We can take this element to be

vj = |0ih1|⌦j 2 Mj , where |0i, |1i 2 Cd
are orthogonal

h0|1i = 0, which guarantees that In[vn] = 0.

Because Ij is surjective, the complement of Dj ✓ Mj

is isomorphic to Mj�1, which contains the irreducible

representation Dj�1 ✓ Mj�1. Then, by Sure’s Lemma

we know that there is a representation Dj�1,j ✓ Mj that

is equivalent to Dj�1 ✓ Mj�1. Proceeding inductively,

we obtain the decomposition

Md
j =

jM

i=0

Dd
i,j . (16)

where each Di,j is irreducible and D0,j is trivial. In this

notation we have Dj,j = Dj and Di,j
⇠= Di,j0 for all j, j0 �

i.
As above, we can generate each subspace Di,j with
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irreducibility of the group action in Di,j . Let us consider

the following ansatz
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where xi are free parameters. Now, we can impose

Dj( ) 2 Dd
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4

directions. Also in QM, we have k = d2 � 1; but here we
are not assuming any particular relation between d and
k. Now it is time to state the main result of this work,
which essentially tells us that the only possible measure-
ment postulates are the quantum ones.

Theorem (measurement). The only family of OPF
sets F2,F3,F4, . . . and F1 equipped with a ?-product sat-
isfying the “possibility of state estimation” assumption
and conditions (7-14), has OPFs and ?-product of the
form

f(') = h'|F |'i , (15)

(f ? g)( ) = h |F ⌦G| i , (16)

for all ' 2 Ca and  2 Ca ⌦ Cb, where the Ca-operator
F satisfies 0  F  , and analogously for G.

Section IV provides a summary of the ideas and tech-
niques used in the proof of this theorem. Full detail can
be found in the appendices.

E. The post-measurement state-update rule

At first sight, the above theorem says nothing about
the post-measurement state-update rule. But actually,
it is well-known [28] that the only possible state-update
rule that is compatible with the probability rule implied
by the theorem (15-16) is the one state above in postu-
late “post-measurement state-update rule”. We include
a self-contained proof of the above in the supplementary
material.

III. DISCUSSION

A. Non-quantum measurement postulate violating
associativity

This example of alternative measurement postulate
shows that it is possible to bypass the measurement theo-
rem if we give up the associativity condition (14). It also
illustrates how a di↵erent choice of measurement postu-
late produces a di↵erent set of mixed states.

Definition (non-quantum measurement postu-

late). An n-outcome measurement on Ca is character-
ized by n Hermitian operators Fi acting on Ca ⌦Ca and
satisfying 0  Fi  P a

+ and

nX

i=1

Fi = P a
+ , (17)

where P a
+ is the projector onto the symmetric subspace of

Ca⌦Ca. The probability of outcome i on the (normalized)
state ' 2 Ca is given by

fi(') = tr
�
Fi|'ih'|⌦2

�
; (18)

and the ?-product of two OPFs f 2 Fa and g 2 Fb of the
form (18) is defined as

(f ? g)( ) = tr
h⇣

F ⌦G+ trF
trPa

+
P a
� ⌦ trG

trP b
+
P b
�

⌘
| ih |⌦2

i
,

for any normalized  2 Ca ⌦ Cb.

This alternative theory violates the principles of “local
tomographic” [30] and “purification” [31]. This and other
exotic properties of this theory are analyzed in detail in
our previous work [32, 33]. Also, the validity of marginal
and conditional states imposes additional constraints on
the matrices F which are also worked out in [33]. It is
easy to check that the above definition satisfies condi-
tions (7-13) and violates associativity (14). Therefore,
this provides a perfectly valid toy theory of systems that
encompass either one or two components, but not more.
As we have mentioned in Section II B, the structure of

the mixed states depends on the measurement postulate.
Here, the mixed state corresponding to ensemble ( r, pr)
is

! =
X

r

pr| rih r|⌦2 . (19)

Another non-quantum property of this toy theory is that
the ensembles corresponding to two di↵erent orthonormal
bases, {'i} and { i} are distinguishable

X

i

1

d
|'iih'i|⌦2 6=

X

i

1

d
| iih i|⌦2 . (20)

B. Gleason’s theorem and non-contextuality

As mentioned in the introduction, Gleason’s theorem and
many other derivations of the Born rule [2–10] assume
the structure of quantum measurements. That is, the
correspondence between measurements and orthonormal
bases {'i}, or more generally, positive-operator valued
measures [11]. But in addition to this, they assume that
the probability of an outcome 'i does not depend on the
measurement (basis) it belongs to. Note that this type
of “non-contextuality” is already part of the content of
Born’s rule.
To show that this “non-contextuality” assumption is

by no means necessary, we review an alternative to the
Born rule, presented in [34], which does not satisfy it.
In this toy theory, we also have that measurements are
associated to orthonormal bases {'i} and each outcome
corresponds to an element 'i of the basis. Then, the
probability of outcome 'i on state  is given by

P ('i| ) =
|h'i| i|4P
j |h'j | i|4

. (21)

Since this example does not meet the premises of Glea-
son’s theorem (the denominator depends not only on 'i

but also on the rest of basis), there is no contradiction in
that it violates the conclusion.
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directions. Also in QM, we have k = d2 � 1; but here we
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tomographic” [30] and “purification” [31]. This and other
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our previous work [32, 33]. Also, the validity of marginal
and conditional states imposes additional constraints on
the matrices F which are also worked out in [33]. It is
easy to check that the above definition satisfies condi-
tions (7-13) and violates associativity (14). Therefore,
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To show that this “non-contextuality” assumption is

by no means necessary, we review an alternative to the
Born rule, presented in [34], which does not satisfy it.
In this toy theory, we also have that measurements are
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I. EQUATIONS OF THE PRESENTATION
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(whatever they mean) will be determined by a collection
of OPFs.

The completeness of the set of OPFs Fd implies the
following three properties:

Fd is closed under taking mixtures. Suppose that the
random variable x with probability px determines which
2-outcome measurement f

x
1 , f

x
2 2 Fd we implement, and

later on we forget the value of x. Then the probability
of outcome 1 for this “averaged” measurement is

X

x

px f
x
1 2 Fd , (7)

which must be a valid OPF. Therefore, mixtures of OPFs
are OPFs.

Fd is closed under composition with unitaries. We can
always perform a transformation U 2 U(d) before a mea-
surement f 2 Fd, e↵ectively implementing the measure-
ment

f � U 2 Fd , (8)

which then must be a valid OPF. Note that here we are
not saying that all unitaries can be implemented, but
only that the formalism must include them.

Fd is closed under systems composition. Since Fd is
complete, it also includes the measurements that appear
in the description of Cd as part of the larger system Cd⌦
Cb ⇠= Cdb, for any background system Cb. Formally, for
each background state ' 2 Cb and global OPF g 2 Fdb

there is local OPF f',g 2 Fd which represents the same
measurement outcome

f',g( ) = g( ⌦ ') , (9)

for all  2 PCd.
Next we consider local measurements in multipartite

systems. In order to do so, it is useful to recall that the
observer always has the option of describing a systems Ca

as part of a larger system Ca⌦Cb, without this a↵ecting
the predictions of the theory. In order to do so, the ob-
server needs to know how to represent the OPFs of the
small system Fa as OPFs of the larger system Fab. This
information is contained in the star product, defined in
what follows.

Definition (?-product). Any pair of local OPFs, f 2
Fa and g 2 Fb, is represented as a global OPF (f ? g) 2
Fab via the star product ? : Fa⇥Fb ! Fab, which satisfies

(f ? g)( ⌦ ') = f( )g(') , (10)

for all  2 PCa and ' 2 PCb. This product must be
defined for any pair of (complex and separable) Hilbert
spaces Ca and Cb.

In other words, the ?-product represents bi-local mea-
surements, which in QM are represented with the tensor-
product in the space of Hermitian matrices.

Since the option of describing system Ca as part of a
larger system Ca ⌦ Cb is a subjective choice that must

not a↵ect the predictions of the theory, the embedding
of Fa into Fab provided by the ?-product must preserve
the structure of Fa. This includes the mixing (convex)
structure

(
P

x px f
x) ? g =

P
x px (f

x? g) , (11)

as well as the U(d) action

(f � U) ? g = (f ? g) � (U ⌦ b) . (12)

And likewise for the other party Fb. The ?-product must
also preserve probability, in the sense that if {fi} ✓ Fa

and {gj} ✓ Fb are full measurements satisfying the nor-
malization condition (6) then we must have

h
(
P

ifi) ? (
P

jgi)
i
( ) = 1 , (13)

for all rays  of Ca ⌦ Cb.
Pushing the same philosophy further, the observer has

the option of describing the tripartite system Ca⌦Cb⌦Cc

as the bipartite system Ca ⌦ [Cb ⌦ Cc] or the bipartite
system [Ca ⌦ Cb] ⌦ Cc, without this a↵ecting the prob-
abilities predicted by the theory. This translates to the
?-product being associative

f ? (g ? h) = (f ? g) ? h . (14)

That is, the probability of outcome f ? g ? h is indepen-
dent of how we choose to partition the global system into
subsystems.

D. The measurement theorem

Before stating the main result of this work, we specify
what should be the content of any alternative measure-
ment postulate, and state an operationally-meaningful
assumption that is necessary to prove our theorem.

Definition (alternative measurement postulate).

This is a family of OPF sets F2,F3,F4, . . . and F1
equipped with a ?-product Fa ⇥Fb ! Fab satisfying con-
ditions (7-14).

In addition to the above, a measurement postulate could
provide restrictions on which OPFs can be part of the
same measurement (beyond the normalization condi-
tion). However, such rules would not a↵ect our results.

Assumption (possibility of state estimation). Each
finite-dimensional system Cd has a finite list of outcomes
f
1, . . . , fk 2 Fd such that knowing their value on any
ensemble ( r, pr) allows to calculate any other OPF g 2
Fd on the ensemble ( r, pr).

It is important to emphasize that f1, . . . , fk need not be
outcomes of the same measurement; and also, this list
need not be unique. For example, in the case of QM, we
can specify the state of a spin- 12 particle with the proba-
bilities of outcome “up” in any three linearly independent
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directions. Also in QM, we have k = d2 � 1; but here we
are not assuming any particular relation between d and
k. Now it is time to state the main result of this work,
which essentially tells us that the only possible measure-
ment postulates are the quantum ones.

Theorem (measurement). The only family of OPF
sets F2,F3,F4, . . . and F1 equipped with a ?-product sat-
isfying the “possibility of state estimation” assumption
and conditions (7-14), has OPFs and ?-product of the
form

f(') = h'|F |'i , (15)

(f ? g)( ) = h |F ⌦G| i , (16)

for all ' 2 Ca and  2 Ca ⌦ Cb, where the Ca-operator
F satisfies 0  F  , and analogously for G.

Section IV provides a summary of the ideas and tech-
niques used in the proof of this theorem. Full detail can
be found in the appendices.

E. The post-measurement state-update rule

At first sight, the above theorem says nothing about
the post-measurement state-update rule. But actually,
it is well-known [28] that the only possible state-update
rule that is compatible with the probability rule implied
by the theorem (15-16) is the one state above in postu-
late “post-measurement state-update rule”. We include
a self-contained proof of the above in the supplementary
material.

III. DISCUSSION

A. Non-quantum measurement postulate violating
associativity

This example of alternative measurement postulate
shows that it is possible to bypass the measurement theo-
rem if we give up the associativity condition (14). It also
illustrates how a di↵erent choice of measurement postu-
late produces a di↵erent set of mixed states.

Definition (non-quantum measurement postu-

late). An n-outcome measurement on Ca is character-
ized by n Hermitian operators Fi acting on Ca ⌦Ca and
satisfying 0  Fi  P a

+ and

nX

i=1

Fi = P a
+ , (17)

where P a
+ is the projector onto the symmetric subspace of

Ca⌦Ca. The probability of outcome i on the (normalized)
state ' 2 Ca is given by

fi(') = tr
�
Fi|'ih'|⌦2

�
; (18)

and the ?-product of two OPFs f 2 Fa and g 2 Fb of the
form (18) is defined as

(f ? g)( ) = tr
h⇣

F ⌦G+ trF
trPa

+
P a
� ⌦ trG

trP b
+
P b
�

⌘
| ih |⌦2

i
,

for any normalized  2 Ca ⌦ Cb.

This alternative theory violates the principles of “local
tomographic” [30] and “purification” [31]. This and other
exotic properties of this theory are analyzed in detail in
our previous work [32, 33]. Also, the validity of marginal
and conditional states imposes additional constraints on
the matrices F which are also worked out in [33]. It is
easy to check that the above definition satisfies condi-
tions (7-13) and violates associativity (14). Therefore,
this provides a perfectly valid toy theory of systems that
encompass either one or two components, but not more.
As we have mentioned in Section II B, the structure of

the mixed states depends on the measurement postulate.
Here, the mixed state corresponding to ensemble ( r, pr)
is

! =
X

r

pr| rih r|⌦2 . (19)

Another non-quantum property of this toy theory is that
the ensembles corresponding to two di↵erent orthonormal
bases, {'i} and { i} are distinguishable

X

i

1

d
|'iih'i|⌦2 6=

X

i

1

d
| iih i|⌦2 . (20)

B. Gleason’s theorem and non-contextuality

As mentioned in the introduction, Gleason’s theorem and
many other derivations of the Born rule [2–10] assume
the structure of quantum measurements. That is, the
correspondence between measurements and orthonormal
bases {'i}, or more generally, positive-operator valued
measures [11]. But in addition to this, they assume that
the probability of an outcome 'i does not depend on the
measurement (basis) it belongs to. Note that this type
of “non-contextuality” is already part of the content of
Born’s rule.
To show that this “non-contextuality” assumption is

by no means necessary, we review an alternative to the
Born rule, presented in [34], which does not satisfy it.
In this toy theory, we also have that measurements are
associated to orthonormal bases {'i} and each outcome
corresponds to an element 'i of the basis. Then, the
probability of outcome 'i on state  is given by

P ('i| ) =
|h'i| i|4P
j |h'j | i|4

. (21)

Since this example does not meet the premises of Glea-
son’s theorem (the denominator depends not only on 'i

but also on the rest of basis), there is no contradiction in
that it violates the conclusion.
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Postulate (transformations). The reversible transfor-
mations of pure states of Cd are the unitary transforma-
tions  7! U with U 2 U(d).

Postulate (composite systems). The joint pure states
of systems Ca and Cb are the rays of the tensor-product
Hilbert space Ca ⌦ Cb.

Postulate (measurement). Each measurement out-
come of system Cd is represented by a linear operator Q
on Cd satisfying 0  Q  , where is the identity. The
probability of outcome Q on state  2 Cd is

P (Q| ) = h |Q| i . (1)

A (full) measurement is represented by the operators cor-
responding to its outcomes Q1, . . . , Qn, which must sat-
isfy the normalization condition

Pn
i=1 Qi = .

The more traditional formulation of the measurement
postulate in terms of (not necessarily positive) Hermitian
operators is equivalent to the above. But we have chosen
the above form because it is closer to the formalism used
in the presentation of our results.

Postulate (post-measurement state-update rule).

Each outcome is represented by a completely-positive lin-
ear map ⇤ related to the operator Q via

tr⇤(| ih |) = h |Q| i , (2)

for all  . The post-measurement state after outcome ⇤
is

⇢ =
⇤(| ih |)
tr⇤(| ih |) . (3)

A (full) measurement is represented by the maps corre-
sponding to its outcomes ⇤1, . . . ,⇤n whose sum

Pn
i=1 ⇤i

is a trance-preserving map.

If the measurement is repeatable and minimally dis-
turbing [29] thenQ1, . . . , Qn are projectors and the above
maps are of the form ⇤i(⇢) = Qi⇢Qi, which is the stan-
dard textbook “projection postulate”. Below we prove
that the “measurement” and “post-measurement state-
update rule” postulates are a consequence of the previous
three postulates.

B. The structure of mixed states

Mixed states are not mentioned in the standard pos-
tulates of QM, but their structure follows straightaway
from the measurement postulate (1). Recall that a mixed
state is an equivalence class of indistinguishable ensem-
bles, and an ensemble ( r, pr) is a probability distribu-
tion over pure states. Note that the notion of distin-
guishability depends on what the measurements are. For
the particular case of quantum measurements (1), the

probability of outcome Q when a source prepares state
 r with probability pr is

P
�
Q
��( r, pr)

�
=

X

r

prP
�
Q
�� r

�
= tr

�
Q⇢

�
, (4)

where we define the density matrix

⇢ =
X

r

pr| rih r| . (5)

This matrix contains all the statistical information of the
ensemble. Therefore, two ensembles with the same den-
sity matrix are indistinguishable.
The important message from the above is that a dif-

ferent measurement postulate would give di↵erent equiv-
alence classes of ensembles, and hence, a di↵erent set
of mixed states. An example of mixed states for a
non-quantum measurement postulate is described in Sec-
tion IIIA.

C. Formalism for any alternative measurement
postulate

Before proving that the only possible measurement pos-
tulate is that of QM, we have to articulate what “a mea-
surement postulate” is in general. In order to do so, we
introduce a theory-independent characterization of mea-
surements for single and multipartite systems. This is
based on the concept of outcome probability function
(OPF), introduced in [32] and defined next.

Definition (OPF). Each measurement outcome that
can be observed on system Cd is represented by the func-
tion f : PCd ! [0, 1] being its corresponding probability
f( ) = P (f | ) for each pure state  2 PCd; and we
denote by Fd the complete set of OPFs of system Cd.

If instead of a single outcome we want to specify a
full measurement with, say, n outcomes, we provide the
OPFs f1, . . . , fn corresponding to each outcome; which
must satisfy the normalization condition

nX

i=1

fi( ) = 1 , (6)

for all states  .
It is important to note that this mathematical descrip-

tion of measurements is independent of the underlying
interpretation of probability: all we are assuming is that
there exist experiments which yield definite outcomes
(possibly relative to a given agent who uses this formal-
ism), and that it makes sense to assign probabilities to
these outcomes. For example, we could interpret them
as Bayesian probabilities of a physicist who bets on fu-
ture outcomes of experiments; or as limiting frequencies
of a large number of repetitions of the same experiment,
approximating empirical data. Whenever we have an ex-
periment of that kind, the corresponding probabilities



Conclusions

• The quantum measurement postulate is the only 
possibility that is compatible with the dynamical 
part of QM. 

• Hence, the content of the measurement postulate 
does not need to be postulated.



Conclusions

• This is a repeated pattern in the history of physics. 

• Example 1: the rebranding of the symmetrization 
postulate as the spin-statistics theorem. 

• Example 2: the derivation of the laws of 
thermodynamics form the principles of mechanics.
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