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Abstract

A Surko-type positron trap has been used to produce intense positron pulses, and

thus a dilute positronium (Ps) gas in vacuum with an initial density of 107 cm−3.

This gas was excited with lasers for a variety of experiments. n = 2 atoms were

prepared using a single-photon excitation scheme (1 3S→ 2 3P) in controlled electric

and magnetic fields for studies of Stark and Zeeman effects, measurements of Ps

cooling via Doppler spectroscopy, and for the production of ensembles of atoms in

pure 2 3S1 states. The first measurements of Ps excitation to specific Rydberg-Stark

states were performed via a two-color two-photon excitation scheme (1 3S→ 2 3P→
n 3S/n 3D). Ps atoms in low-field–seeking Rydberg Stark states were prepared at

the entrance of an electrostatic quadrupole guide which was used to control the

trajectories and velocity distributions of the Ps atoms. These advances, together

with the results from numerical simulations, suggest that these methods could be

used in to perform Stark deceleration and trapping of Rydberg Ps, high-precision

Ps spectroscopy, and to create positron-atom bound states.
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Chapter 1

Introduction

1.1 Motivation

In this thesis I describe recent advances in the fields of positronium (Ps) laser

spectroscopy and the manipulation of excited Ps atoms by inhomogeneous elec-

tric fields. Experiments were performed using an intense pulsed positron beam

(typically ∼106 particles in a 3 ns pulse) generated with a Surko-type buffer

gas trap [Danielson et al. 2015]. This beam was implanted into porous silica tar-

gets [Liszkay et al. 2008] which generate a thermal Ps “gas” in vacuum that can be

probed with pulsed laser systems (∼ 6 ns). Standard pulsed dye lasers can gener-

ate beam intensities on the order MW/cm2, which enables efficient Ps excitation,

generally limited only by the spectral overlap of the laser light and the Doppler

broadened optical transition; our experiments all begin by driving 1S− 2P transi-

tions using UV light (243 nm), and in some cases a second IR laser (750 nm) is

also used to produce highly excited Rydberg states, including selected Rydberg-

Stark states [Wall et al. 2015, Deller et al. 2016b]. Stark states with positive energy

shifts have large electric dipole moments and experience forces towards electric

field minima. We have made use of these properties to manipulate atoms with in-

homogeneous electric fields [Deller et al. 2016a, Alonso et al. 2017a], resulting in

radial confinement in an electrostatic quadrupole guide.

This technique and other forms of atom optics, such as deceleration and

trapping [Lancuba & Hogan 2014, Hogan et al. 2013], may make it possible
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to perform a Rydberg Ps free-fall measurement [Mills & Leventhal 2002] to

test for anomalous gravitational interactions of systems containing antimatter

[Goldman & Nieto 1982]. However, because stray electric fields can never be com-

pletely eliminated, free-fall experiments performed using Rydberg atoms require

Stark states that are not sensitive to electric fields (i.e., states with no dipole mo-

ment), which is incompatible with Stark manipulation methods. An alternative ap-

proach to performing a gravity measurement of Ps could be to use metastable 2 3S1

states [Alonso et al. 2017b, Alonso et al. 2016b, Alonso et al. 2015], for interfer-

ometry measurements [Oberthaler 2002, Sala et al. 2015], which may be sensitive

enough to measure gravitational effects [Biedermann et al. 2015].

The availability of a slow and focussed Ps beam would enable improved pre-

cision in Ps spectroscopy. A sufficiently precise measurement of the Rydberg con-

stant (R∞) using Ps could eventually contribute towards the “proton radius puz-

zle” [Pohl et al. 2010, Pohl et al. 2013]. This is a discrepancy in the proton ra-

dius as measured in precision hydrogen spectroscopy and in experiments using

muonic hydrogen [Mohr et al. 2016]. The origin of this discrepancy remains unex-

plained; some new measurements of the 2s-4p transition frequency in hydrogen that

take into account quantum interference phenomena have been performed. These

measurements find a smaller value for the Rydberg constant than previous exper-

iments [Beyer et al. 2017], and agree with the muonic hydrogem measurements.

This indicates that inaccuracies in our knowledge of R∞ could be the root cause of

the discrepancy. The situation is not resolved by one single new measurement, and

new data are warranted. It would be valuable therefore to measure this constant also

in Ps, since it does not contain any proton related complications.

1.2 Antimatter and discovery of positronium

Antimatter has been a subject of theoretical and experimental study for over 80 years

since its existence in the form of the positron was predicted by Dirac [Dirac 1927,

Dirac 1928a, Dirac 1928b, Dirac 1931], and subsequently confirmed by Ander-

son in cloud chamber experiments [Anderson 1933]. Shortly after this discovery,
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it was postulated by Wheeler [Wheeler 1946] (and earlier also by Mohorovičić

[Mohorovičić 1934], but with a much less rigorous mathematical treatment) that

it should be possible for a positron and an electron to form a bound metastable sys-

tem which would have similar properties to that of hydrogen, i.e, a negative charge

orbiting a positive charge, but with a correspondingly small reduced mass. Mo-

horovičić named this new element electrum, although today it is more commonly

known as positronium [Ruark 1945].

Positronium can be described by the Bohr model as a hydrogenic system with a

reduced mass of approximately half that of hydrogen (µPs ' µH/1.9989), meaning

that, compared to hydrogen, the Bohr radius for Ps is twice as large, its Rydberg

constant is reduced by a factor of ∼2, and the gross energy levels quantified by the

principal quantum number n are separated by half the energy compared to hydrogen,

i.e., the binding energy of Ps is 6.8 eV instead of 13.6 eV.

However, there are many more differences and interesting properties that dis-

tinguish Ps from hydrogen other than a factor of two. For example, the spin-orbit

coupling “fine structure” corrections and the spin-spin interactions (sometimes in-

correctly labeled as “hyper-fine”) have similar magnitudes, thus rendering the dis-

tinction between the terms fine and hyper-fine somewhat meaningless when refer-

ring to Ps.

Perhaps the most notable difference between Ps and any other conventional

atom is its self-annihilating nature. Being composed of a particle-antiparticle

pair, the annihilation probability is proportional to the overlap of the electron and

positron wavefunctions [Dirac 1930], such an overlap is non-zero for S (`= 0) states

(although this overlap scales as n−3 [Ore & Powell 1949, Dirac 1930]), this leads to

the singlet (1 1S0) and triplet (1 3S1) ground states of Ps (often referred to as p-Ps

and o-Ps) having lifetimes of 125 ps and 142 ns respectively, however, for states

where ` > 0, the overlap is almost completely suppressed and the annihilation rate

becomes much larger than the fluorescence rates, as shown in table 1.1.

Positronium was first observed by M. Deutsch in 1951 [Deutsch 1951a] in an

experiment which made use of a 22Na radioactive source to produce a steady stream
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of positrons which then collided with various different gases to form Ps, he mea-

sured the lifetime of triplet ground state Ps and the energy difference between o-Ps

and p-Ps [Deutsch 1951b, Deutsch & Brown 1952]. These measurements were in

agreement with bound state QED and were the first experimental evidence for the

existence of Ps.

1.3 Positronium spectroscopy, early history

The field of atomic physics saw great change after the invention of the laser in

1960 [Maiman 1960], enabling the measurement of atomic lines with precision

[Hänsch et al. 1971]. However, even though Ps was created in a controlled lab en-

vironment some years before the advent of the laser, it did not take part in this

initial revolution, instead it was not until 1982 that Ps laser spectroscopy was

made plausible in a comparable way to regular atoms [Chu & Mills 1982]. The

main limitations that held back the initial Ps experiments were to do with the DC

positron beams that were used at the time which did not have large enough inten-

sities [Canter et al. 1972] to perform optical spectroscopy experiments efficiently

with continuous wave (CW) lasers.

Another major complication when it comes to performing spectroscopy with

Ps is its remarkably short self-annihilation lifetimes. For the triplet ground state the

annihilation lifetime is 142 ns if unperturbed, it is therefore not possible to store Ps

atoms for a long period of time and build up a “Ps reservoir” with which experi-

ments may be performed. This is a major disadvantage since many spectroscopic

experiments depend on readily available dense atomic gases. Since ground state

Ps could only be stored for up to 142 ns, then the most efficient way to spectro-

scopically study it is to produce it in a pulsed fashion and address it with a high

power pulsed laser as soon as it is produced, before any significant portion of it

self-annihilates. It is possible to design an experiment where a CW laser is used for

laser excitation of Ps [Fee et al. 1993], however, such arrangements tend to have

very low count rates, they are contingent on not needing to change laser wavelength

by a large amount, and usually need major modifications if a different measurement
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is to be taken.

The first experiments that succeed in photoexciting Ps used pulsed positron

beams and took place between 1982 and 1992. An experiment performed by S. Chu

and A. P. Mills [Chu & Mills 1982], and made use of a 58Co β+ radioactive source

and a magnetic bottle buncher to produce small positron pulses containing ∼ 20

positrons in 10 ns FWHM pulses, which were implanted in a solid Cu(111) target

to produce approximately 4 Ps atoms per pulse that could then be addressed by the

laser pulses. Regardless of the extremely low count rate, this experiment yielded

a measurement of the 1 3S1 → 2 3S1 two-photon Doppler-free transition linewidth

agreeing with theory to within 0.5 GHz. This same experiment was improved upon

in 1984, using an Al(111) solid target and a slightly more intense positron beam

(∼ 80 positrons per pulse) to yield an extremely precise measurement (to within 12

ppb) of the 1 3S1→ 2 3S1 transition interval which agreed to within 1 % with QED

predictions [Chu et al. 1984].

A similar experiment was then performed making use of a pulsed positron

beam generated from an accelerator, and a CW laser [Fee et al. 1993], which

managed to increase the precision of the measurement by approximately a fac-

tor of 3. The only other example of Ps laser spectroscopy up until 2010 was

done by K. P. Ziock et.al. [Ziock et al. 1990a, Ziock et al. 1990b]. They made

use of an intense positron pulse (approximately 105 positrons per 15 ns pulse)

generated from the linear accelerator at the Lawrence Livermore National Lab-

oratory; at the time, this was the most intense positron beam in the world

[Howell et al. 1982, Howell et al. 1985]. They used pulsed lasers to excite Ps to

high Rydberg states with a principal quantum number n between 13 and 15. How-

ever, after both of these experiments concluded, the field of Ps spectroscopy did not

advance at all for ∼17 years. This was partly because in order to perform some

of these experiments, accelerators were needed, which are not common enough to

drive such experiments into the laser physics mainstream, and even though appro-

priate radioactive sources were relatively easy to obtain (compared to accelerators),

they offered extremely low count rates, and the experiments that made use of them
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were notoriously difficult to perform.

It was not until C. M. Surko and co-workers designed a Penning buffer gas trap

with an asymmetric electric potential structure (commonly known as a Surko trap)

that it was feasible to consider building a University-scale Ps laser spectroscopy

lab without the need for accelerators [Surko et al. 1989, Murphy & Surko 1992,

Danielson et al. 2015].

The use of Surko traps enabled new Ps spectroscopic measurements that did

not require large-scale facilities or relied on low count-rates, bringing Ps spec-

troscopy much closer to the level that the rest of the atomic laser spectroscopy

community had been at for decades. Even though these new positron trapping tech-

niques meant that ∼ 5 ns pulses of over 106 positrons could be produced without

the need for an accelerator, the amount of Ps atoms created was still not enough to

perform efficient absorption or emission spectroscopy, since the Ps atoms are typi-

cally produced with large energy spreads, and in comparatively low numbers. How-

ever it is worth noting that the first observation of n = 2 Ps was indeed performed

[Canter et al. 1975] by measuring the emitted photons from the excited state to the

ground state, but modern detection techniques [Cassidy et al. 2006b] that detect the

gamma rays produced after Ps annihilates are far more efficient and are the norm

today. Gamma ray photons are easy to detect, and in each Ps pulse containing up

to 105 Ps atoms, it is possible to measure of the order of 104 photons, meaning that

experiments can be performed with much better signal to noise ratios.

Before 2006, Ps spectroscopy experiments were usually performed by count-

ing a single gamma ray photon per positron pulse, it was not until a new detection

scheme was devised [Cassidy et al. 2006b] that it was possible to extract more ac-

curate information from single positron pulses recording a full waveform from a

scintillator material into a fast oscilloscope due to a short positron pulse being im-

planted into a solid Ps production target. This means that all events caused by

the positron pulse (accounting for solid angle and detection efficiency) can con-

tribute towards the timing spectrum being measured, as opposed to just one (as

it is the case with Positron annihilation lifetime spectroscopy (PALS) techniques),
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thus vastly decreasing the amount of acquisition time needed for each spectrum

[Cassidy et al. 2006b].

Positron trapping techniques were combined with the newest detection

methods in a series of experiments in UCR (University of California River-

side) by D. B. Cassidy, A. P. Mills and co-workers, where the first optical

spectroscopy measurements of Ps in 17 years were performed. These in-

clude, amongst many others; the first measurement of the Ps 1 3S1 → 2 3PJ

transition lineshape [Cassidy et al. 2010a], narrowing and cavity shift effects

[Cassidy et al. 2011b], new measurements of the energy difference between the

Ps singlet (1 1S0) and triplet (1 3S1) ground state [Cassidy et al. 2012c], many ad-

vances towards the formation of a Ps BEC, such as demonstrating interactions

between Ps atoms in porous targets [Cassidy & Mills 2011], production of a fully

spin-polarized Ps ensemble [Cassidy et al. 2010b], the remarkable production of

the Ps molecule (Ps2) [Cassidy & Mills 2007] and optical spectroscopy of its first

excited state [Cassidy et al. 2012b], and finally, measurements of Ps excited to a

high Rydberg state [Cassidy et al. 2012a, Jones et al. 2014] with greatly improved

signal to noise ratios compared to the measurements made by K. P. Ziock et. al

[Ziock et al. 1990b].

1.4 Properties of positronium
Positronium can be described in simple terms as a hydrogenic system. Since it is

composed of only two oppositely charged particles bound by the Coulomb interac-

tion, its energy levels can be described by [Foot 2005]

En =
−α2µPsc2

2n2 =
−α2mec2

4n2 ' −6.8 eV
n2 , (1.1)

where n represents the principal quantum number, c is the speed of light in vacuum,

α is the fine structure constant, µPs is the reduced mass for Ps, and me is the mass of

the electron. The fundamental difference between hydrogen and positronium is that

the reduced mass is approximately half compared to hydrogen (i.e., µPs = me/2,

µH ' 0.9995me) and therefore the gross energy levels that yield from equation 1.1
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Level τann.(ns) Ref. τfl.(ns) Ref.

1 1S0 0.125 [Dirac 1930] N/A N/A

1 3S1 142 [Ore & Powell 1949] & 1016 [Wallyn et al. 1996]

2 1S0 1 [Dirac 1930] '243100000 [Shapiro & Breit 1959]

2 3P0 100000 [Alekseev 1958] 3.19 [Bethe & Salpeter 1957]

2 3P1 ' ∞ [Alekseev 1958] 3.19 [Bethe & Salpeter 1957]

2 1P1 3330000 [Alekseev 1959] 3.19 [Bethe & Salpeter 1957]

2 3P2 384000 [Alekseev 1958] 3.19 [Bethe & Salpeter 1957]

2 3S1 1136 [Ore & Powell 1949] '243100000 [Shapiro & Breit 1959]

Table 1.1: Annihilation (τann.) and fluorescence (τfl.) lifetimes for the n = 1 and n = 2 Ps.
From [Alonso et al. 2016b].

are approximately scaled by a factor of 1/2 accordingly.

However, the fine (and so-called hyperfine) structure of Ps is remarkably dif-

ferent from that of hydrogen. Positronium atoms are subject to virtual annihilation

processes [Rich 1981] that result in large shifts in the energy levels, and the spin-

spin interaction between the positron and the electron is far larger than the spin-spin

interaction of the electron with the proton in hydrogen since the nuclear magneton is

so much smaller than the Bohr magneton [Mohr et al. 2016]. Because of historical

reasons the energy splitting between the two n = 1 spin states of Ps (1 3S1 and 1 1S0)

has been referred to as the hyperfine splitting due to its analogy with the hydrogen

hyperfine splitting, however this is quite misleading since this splitting arises in part

due to a mechanism that is not present in hydrogen. Virtual annihilation processes

coupling to the vacuum, a process unique only to Ps and other particle-antiparticle

systems. However, regardless of nomenclature, the energy splitting between the

two spin states in ground state Ps is much larger than it is in hydrogen (∼203 GHz

[Pirenne 1944] for Ps and ∼1.4 GHz [Hellwig et al. 1970] for hydrogen). The fine

structure corrections up to α4 order are given by [Ferrell 1951] with respect to the

gross energy levels given by equation 1.1 as

∆En,`,S,J =
α4mec2

n3

[
11
64n
− (1+ ε`,J/2)

2(2`+1)

]
, (1.2)
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where ε`,J = 0 for S = 0 and for S = 1,

ε`,J =−
7
3

δ`,0 +(1−δ`,0)



−(3`+4)
(`+1)(2`+3)

, J = `+1

1
`(`+1)

, J = `

(3`−1)
`(2`−1)

, J = `−1


, (1.3)

where δ`,0 is the Kronecker delta function. It is worth noting that equations 1.3

and 1.2 are re-arranged versions of the equations given in [Ferrell 1951] for added

clarity. However, the equation given by Ferrell contains a mistake, in the form

of a missing multiplicative factor of
7

12
to the first Kronecker delta function in his

expression. Without this factor, his expression fails for triplet S states (S = 1, `= 0).

The version given in equation 1.3 accounts for this error. The corresponding energy

level structure for the ground state and the first excites state of positronium is thus

given in figure 1.1 with modern values.

The very notion of an atom decaying when it is already in the ground state

may seem rather bizarre to the large majority of the atomic physics community

which routinely deals with matter systems. However, once the self annihilation na-

ture is formalized as another decay channel that leads to a ground state from which

the atom cannot be recovered (i.e., the vacuum) then it may be simply combined

with regular fluorescence annihilation to characterize the decay rate of a certain

state. In practice, the self-annihilation channel in Ps is effectively closed once n

is increased above n = 2 (and ` > 0). This is due to the fact that this annihila-

tion rate scales with the amount of overlap between the positron and the electron

[Alekseev 1958, Alekseev 1959], and thus it is greatly reduced as the separation

between the positron and the electron is increased, by increasing ` or n. Table 1.1

shows how the fluorescence and the self-annihilation lifetimes and illustrates how

the annihilation decay rates scale as n−3 [Dirac 1930] and how they quickly be-

come irrelevant even for ` = 1 when compared to the fluorescence lifetimes which

dominate at higher levels.
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The number of gamma ray photons produced when Ps in a specific |`S > state

annihilates is [Wolfenstein & Ravenhall 1952]

(−1)N = (−1)`+S, (1.4)

where N is the number of photons produced. This is a result of charge conjugation

invariance, and it indicates that, in the ground state, triplet states must annihilate into

an odd number of photons, and singlet states must annihilate into an even number.

For both cases, single-photon and zero-photon radiation is forbidden by momentum

and energy conservation, and the higher order channels (such as a triplet state decay-

ing into 5 photons instead of 3, and a singlet state decaying into 4 photons instead

3S1

1S0

1S0

3P0

1P1

3P1

3P2

3S1

n = 2

E
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Figure 1.1: Ps energy level diagram indicating the fine structure of states with n = 1 and
n = 2. The intervals between each level are denoted by their relative frequency
with respect to the energies given by the Rydberg formula E(n) =−6.8eV/n2.
From [Alonso et al. 2016b].
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of 2) are heavily suppressed (at least by a factor of α , plus additional contributions

due to the density of final states of photons [Ore & Powell 1949]). This means that

the annihilation gamma rays from singlet states is likely to be two 511 keV pho-

tons (since mec2 = 511 keV), however, for triplet states there can be a range of

gamma ray energies since the 3 photons must add to the total rest mass energy of

Ps and there are many combinations that can satisfy this and maintain momentum

conservation at the same time.



Chapter 2

Apparatus and techniques

Details on the instrumentation and apparatus described in this chapter have been

previously published in several articles, and as such, much of the content and fig-

ures used here were taken from these publications. Contents from Section 2.1 de-

scribing the apparatus used to produce a pulsed positron beam were published in

the following articles:

• B. S. Cooper, A. M. Alonso, A. Deller, T. E. Wall, and D. B. Cassidy. A trap-

based pulsed positron beam optimised for positronium laser spectroscopy.

Rev. Sci. Instrum., 86, 103101 (2015). doi: 10.1063/1.4931690.

• A. M. Alonso, B. S. Cooper, A. Deller, S. D. Hogan and D. B. Cassidy.

Positronium decay from n = 2 states in electric and magnetic fields. Phys.

Rev. A, 93, 012506 (2016). doi: 10.1103/PhysRevA.93.012506.

While contents from Section 2.3.2 describing detection techniques and the compar-

ison of LYSO scintillators against PWO scintillators were published in:

• A. M. Alonso, B. S. Cooper, A. Deller and D. B. Cassidy. Single-shot positron

annihilation lifetime spectroscopy with LYSO scintillators. NIMA, 828, 163

(2016). doi: 10.1016/j.nima.2016.05.049.

And the contents from Section 2.4 describing the counting algorithms used when

making time of flight measurements were published in:

https://dx.doi.org/10.1063/1.4931690
https://doi.org/10.1103/PhysRevA.93.012506
https://dx.doi.org/10.1016/j.nima.2016.05.049


19

• A. Deller, A. M. Alonso, B. S. Cooper, S. D. Hogan, and D. B. Cassidy.

Measurement of Rydberg positronium fluorescence lifetimes. Phys. Rev. A,

93, 062513 (2016). doi: 10.1103/PhysRevA.93.062513.

http://link.aps.org/doi/10.1103/PhysRevA.93.062513


2.1. Positron beamline 20

2.1 Positron beamline

2.1.1 Solid neon moderator

The system described here contains a DC positron beam derived from a 1 GBq 22Na

source mounted behind a conical aperture [Khatri et al. 1990] that is thermally cou-

pled to, but electrically isolated from, a 5 K closed cycle helium cryostat. A

mono-energetic positron beam (approximately 1.5 eV spread) was achieved from

the wide energy spread of the radioactive source via a process known as modera-

tion [Canter et al. 1972, Cherry 1958] by freezing neon gas in front of the source

[Mills & Gullikson 1986]. The positrons lose some of their kinetic energy via col-

lisions with the solid neon, the moderator is grown by admitting neon gas directly

in front of the cone via a thin tube for around 8 minutes; the pressure measured in

the source chamber is ∼ 1×10−3 mbar during the moderator growth. An example

of a typical moderator growth sequence is shown in figure 2.1. A new moderator

typically produces a DC beam of ∼ 6× 106 e+s−1 from a radioactive source with

an activity of ∼ 109 e+s−1 which indicates a moderator efficiency of ∼0.6%.
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Figure 2.1: (a) A typical moderator growth sequence showing a steady increase in count
rate (solid line) when the neon is introduced at a constant temperature and pres-
sure (dots and dashes). The gas inlet is closed when the count rate levels off,
causing a drop in the pressure and a corresponding increase in the count rate.
The temperature (dotted line) is held above the cold head base temperature (5
K) during the growth to anneal the neon deposit.
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The beam is monitored by a NaI scintillator attached to a photomultiplier tube

(PMT). This is done by counting positron annihilation events that occur at the gate

valve just before the next section of the beamline.

2.1.2 Buffer Gas trap

The moderated positron beam is guided to a two-stage Surko-type buffer-gas

trap [Surko et al. 1989, Danielson et al. 2015] designed to capture a DC beam and

emit positrons at 1 Hz. The system typically operates with a N2 and a CF4 mix-

ture for positron capture and cooling [Murphy & Surko 1992, Natisin et al. 2014].

Positrons lose energy through inelastic collisions with N2 molecules in the trap.

This causes axial confinement within the static potential structure applied to the

trap electrodes. A diagram of the beamline can be seen in figure 2.2. The potential

structure and approximate pressures in the trap are shown in figure 2.3. Radial con-

finement is induced by the approximately flat magnetic field (∼ 500 G) produced

by the large solenoid surrounding the trap.

The device differs from the standard Surko arrangement [Murphy & Surko 1992]

insofar as it has a larger pressure in the final stage and hence a relatively

short positron lifetime. Radial compression of the trapped positrons is achieved

22Na positron source, (1 GBq) 

5 K cold-head
Turbo 
pump

Turbo pumpIon pump

Pumping restrictions

Cryo pump

Positron trap (Surko-type, two stage)

Turbo 
pump

Cryo pump

Ps target + 
laser interaction

Buncher

Turbo 
pumps

Figure 2.2: Schematic of the positron beam used in the experiments. From left to right; a
22Na β+ radioactive source is held in a 5 K coldhead where a solid neon moder-
ator is “grown”. A series of coils an solenoids then lead the DC positron beam
to a Surko-type buffer gas trap, where positrons are accumulated and eventually
ejected into a parabolic ring buncher which produces pulses of∼3 ns, which are
then guided and implanted into a porous silica target in the Ps-laser interaction
region. Also shown below the positron trap is the electrode potential arrange-
ment and approximate nitrogen pressures used to capture and cool positrons.
Adapted from [Marjanovi et al. 2016].
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Figure 2.3: Axial electric potential in the trap during loading phase. The reduction in gas
pressure from stage one to two increases the lifetime against annihilation in the
second stage. The lifetime is increased further with the application of rotating
wall compression. From [Cooper et al. 2015]

with a rotating wall quadrupole electric field, operating in a non-plasma

regime [Cassidy et al. 2006a, Greaves & Moxom 2008, Isaac et al. 2011]. The ro-

tating wall field induces inward radial transport of the positrons, which reduces

collisions with the chamber walls. This is achieved by applying a sinusoidal signal

to a segmented electrode (8 segments) in the final stage of the trap, each segment

has its signal phase-shifted by π/2 from the adjacent electrode. Typical sinusoidal

frequencies and amplitudes for the rotating wall are of the order of ∼ 4.5 MHz and

∼500 mV respectively. This increases the lifetime of the stored positrons which is

then determined only by annihilation with the N2 and CF4 molecules.

The positron beam spot size is reduced via this process, which is a form of

loss-free re-moderation [Mills 1980a] (i.e., phase space compression). The Ps-laser

interaction region is approximately 1 - 2 m from the trap (depending on experimen-

tal setup) and contains a micro-channel plate (MCP) and phosphor screen assembly

which are viewed with a CCD camera. These are used to align the positrons to a
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well-defined spatial location which is then overlapped by the lasers used for op-

tical excitation. Images of the DC beam and the pulsed trap output are shown in

figure 2.4. The annular profile of the DC beam is due to the conical nature of the

moderator. The design of the source [Greaves & Moxom 2003] is such that the cap-

sule is not thermally connected to the moderator cone and therefore does not get

cold enough for neon gas to freeze onto its window.

The increase in the positron lifetime when the rotating wall field is applied can

be seen in figure 2.5, which shows the annihilation signal of the trap output pulse as

a function of fill time. The signal is proportional to the number of positrons in the

pulse. These data are fitted with

Ne+ = A(1− e−t/τ) (2.1)

where τ is the positron lifetime in the second stage of the trap, A = Rτ , and R is

the positron capture rate. The lifetime in the trap is measured as 1.72±0.07 s and

0.13±0.09 s with the rotating wall on and off, respectively. When the rotating wall

field is applied, the measured lifetime is almost entirely due to interactions with gas

molecules. Without the rotating wall field, positron diffusion to the electrodes leads

to an increased annihilation rate [Deller et al. 2014].

The lifetime in the trap is an important factor in determining the repetition rate

at which the system is most efficient. This is also informed by other factors; in the

case of spectroscopy with pulsed lasers, for example, it is necessary to match the

trap and laser repetition rates.

Figure 2.5 shows that the number of trapped positrons begins to saturate above

a 2 s fill time, and this sets the lower limit for the trap cycle rate of 0.5 Hz. It would

be possible to run at lower repetition rates, but since the number of trapped positrons

is not yet saturated, it would be less efficient. The apparatus we describe here

cannot produce high positron densities as in [Cassidy et al. 2006a], but is suitable

for performing optical measurements using a low-density Ps ensemble. The optical

excitation is based on a pulsed laser system that can operate at rates between 1 and

10 Hz, and so we use a 1 Hz repetition rate on the positron trap (during the linear
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(a)

(b)

Figure 2.4: (a) DC beam imaged on multichannel plate, phosphor screen assembly with
a three dimensional representation and orthogonal line profiles projected onto
the axes. The hole in the middle of the beam is due to the conical moderator
substrate geometry. (b) Trap output pulse imaged on the same detector. Fitting
of the line profiles gives a spatial pulse width of 3.33±0.01 mm FWHM in the
wider direction (x-axis). The observed beam size depends on the magnetic field
in the target region (130 G). Both (a) and (b) have been normalized to the peak
amplitudes. From [Cooper et al. 2015]
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Figure 2.5: Annihilation gamma ray signal of measured from the trap output as a function
of positron accumulation time. The lifetime against annihilation within the trap
(τ) is estimated by fitting equation 2.1 to the measured data and has a value
of 1.72±0.07 s when the rotating wall is being driven at 4 MHz and 4 V. The
lifetime reduces to 0.13±0.09 s in the absence of a rotating electric field. From
[Cooper et al. 2015]

gain in positrons trapped) matched to our laser system also operating at 1 Hz, this

would be equivalent to operating at larger repetition rates, such as 10 Hz, however

the laser system (including the lifetime of the laser dye) and the electronics pulsing

the trap are more stable when pulsing at slower repetition rates, the corresponding

signal-to-noise ratios are larger, and thus 1 Hz is more convenient for our apparatus.

We make use of a parabolic harmonic potential buncher (as described

in [Mills 1980b] and similar to the one used in [Cassidy et al. 2006a]) to maintain

the time width of the positrons coming out of our Surko Trap for longer distances,

figure 2.6 shows that using this technique we can achieve positron widths of ap-

proximately 3 ns approximately 2 m away from the trap, which are ideal for our

laser excitation system which has laser pulses of ∼ 5 ns.
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Figure 2.6: Positron signal measured on a double stack Multi-Channel Plate (MCP) at the
end of the beamline. The buncher present after the Surko trap enables us to
achieve positron pulse widths of ∼3 ns. The amplitude of the signal has been
normalized to 1. The negative values of the MCP signal are cable reflections.

2.1.3 Positronium formation

Positron pulses from the buffer gas trap are magnetically guided to an appropriate

positron-Ps converter target, for all of the experiments described here, this converter

was a porous silica (SiO2) film [Liszkay et al. 2008]. These targets are robust, easy

to use, and their Ps production is generally very stable over long periods of time.

Perhaps the most useful feature of these porous silica targets is the fact that

the Ps formation mechanism allows for significant cooling [Cassidy et al. 2010a]

to take place if there are enough collisions of the Ps atoms with the porous net-

work. When the porous silica target is bombarded with positrons that are energetic

enough, they penetrate deep into the bulk material, where they capture an electron

and become bound, forming ground-state Ps. The newly formed Ps atoms then

diffuse through the bulk towards regions of lower potential energy i.e., the pores.

While inside the pores the Ps atoms have numerous inelastic collisions with the
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Figure 2.7: (a) Positronium-laser interaction chamber. Two coils surround the chamber
producing a magnetic field of ∼130 G. The target may be raised out of view of
the positron beam for performing trap diagnostics using the MCP. (b) Zoomed
SiO2 porous silica target mount. The target is mounted behind a tungsten grid
which is 90% transmissive. Ps atoms are made within the bulk of the material
and emitted into vacuum. A 2 mm diameter alignment hole at the bottom of the
mount allows calibration of the CCD camera in order to determine the positron
beam size at the target. The hole is also used to match the position of the lasers
with the emitted Ps. From [Cooper et al. 2015]
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internal surfaces, causing them to eventually lose energy to come near to thermal-

ization with the temperature of the target. Positronium atoms eventually diffuse

out of the target and are emitted into the vacuum chamber forming a dilute atomic

gas. It is worth noting that regardless of the positron beam polarization and effi-

ciency, roughly 25 % of the Ps atoms that are produced as soon as the positrons

are implanted, will be in the lowest energy ground state, with a singlet configura-

tion, (1 1S0) [Wolfenstein & Ravenhall 1952, Adkins 1983]. Ps atoms in this state

have a characteristically short lifetime of 125 ps [Dirac 1930], meaning that anni-

hilations events due to decay of Ps from this state occur so quickly that they are

indistinguishable by our timing detection techniques [Cassidy et al. 2006b] from

direct positron-electron annihilation when the positrons are implanted into the sam-

ple. The Ps formation process on a typical porous silica sample is approximately

30 % efficient (i.e., about 30 % of the positrons implanted in the target become

o-Ps). The geometry of the interaction region is shown in Figure 2.7.

2.2 Laser setup

All spectroscopic measurements performed in this project excited ground state

Ps to the first excited state, n = 2, via optical electric dipole transitions, i.e.

1 3S1 → 2 3PJ . Radiation of 243 nm is required to drive this transition. Such

radiation was achieved by first producing short (∼ 5 ns) pulses of 1064 nm radi-

ation from a solid-state Q-switched neodymium-doped yttrium aluminum garnet

(Nd:YAG) laser, yielding pulses of up to 700 mJ of energy per pulse. This radiation

is then passed through a nonlinear doubling crystal made of potassium dihydrogen

phosphate (KDP). This crystal is used to double the frequency of the incoming light

and produces laser pulses with wavelength 532 nm of up to 220 mJ per pulse. The

residual 1064 nm laser radiation is then mixed in with the 532 nm light in another

KDP non-linear crystal, thereby generating the third harmonic with wavelength of

355 nm, and pulses of up to 130 mJ.

The 355 nm third harmonic is then used to pump a pulsed dye laser (Sirah

Cobra Stretch). The lasing medium is Coumarin 102 and it was used to produce
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Figure 2.8: Laser system schematic. The system can be modified for either 730-750 nm
(IR) Rydberg state production or photoionisation of 2P state Ps with residual
532 nm (green) light. From [Cooper et al. 2015]

243 nm

~ 750 nm

243 nm

532 nm

243 nm

n = 1

n = 2 

n = 3 - ∞ 

I.P(a) (b) (c)

Figure 2.9: Three different excitation schemes described in figure 2.8. Single-photon exci-
tation 1 3S1→ 2 3P with 243 nm UV radiation (a). Two-photon photoionization
using additional 532 nm light to excite beyond the ionization potential (I.P) (b).
Two-photon excitation (1 3S1→ 2 3P→ n 3S/ 3D) to an arbitrary Rydberg state
ranging n = 9−∞ using tunable IR laser (c).
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Figure 2.10: Spectrum of n = 1→ n = 2 lineshape transition (a). This excitation was per-
formed by exciting Ps from n = 1 to n = 2 with the 243 nm UV laser, and
subsequently ionizing the n = 2 states with the 729 nm IR laser. The exci-
tation was done for a target implantation energy of 1.5 kV (blue circles) and
4 kV (red squares), higher implantation energy leads to more collisional cool-
ing in the SiO2 porous structure and thus the Doppler width (σ ) is reduced.
The Lamb dip visible for both cases in the center of the lineshape is caused
by reflected UV light from the vacuum windows. (b) Is a generic laser trigger
delay scan. The Laser trigger time is the trigger for both the UV and IR lasers.
It can be seen that the Ps beam and the lasers do overlap in time for ∼40 ns
and ∼50 ns for 1.5 kV and 4 kV implantation energy respectively since the
atoms produced by 1.5 kV implantation are on average faster than the 4 kV,
then the interaction time with the laser beams is reduced. The data shown in
(a) was taken in both cases for the trigger time = 0.
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radiation of wavelength 486 nm, in pulses of up to 30 mJ, this laser light is then

doubled in a beta barium borate (BBO) crystal to produce pulses of up to 4 mJ of

laser radiation of wavelength 243 nm and bandwidth of 85 GHz (such large band-

width was achieved by forming a cavity with a set of prisms instead of a grating),

this is the beam that is used in all of our experiments to excite Ps from 1 3S1 to 2 3PJ

[figure 2.9(a)].

After the 1064 nm radiation is doubled into 532 nm, and these two are mixed

to produce the third harmonic 355 nm, there is still some leftover 532 nm light that

could then be used to simultaneously pump a second dye laser (Radiant Narrows-

can) with a lasing medium (Styryl 8) that was used to produce radiation of wave-

length between 729 nm and 770 nm. This light was used to either directly ionize

Ps once it had been excited to n = 2, or to further excite it to a Rydberg state via a

2 3PJ→ n 3S/ 3D transition [figure 2.9(c)]. Sometimes, instead of infra-red (IR) light

of wavelength 729 nm and bandwidth of 5 GHz, the residual 532 nm beam was used

to ionize Ps [figure 2.9(b)], this is shown by the dashed green line in figure 2.8. The

three possible excitation schemes are depicted in figure 2.9. It is worth noting that

for the case of the IR and UV lasers, we were able to control the polarization of the

laser pulse by passing the beams through wavelength-appropriate half-waveplates

and Glan-Taylor polarizer beamcubes, thus producing linear polarizations with pu-

rities of > 95%.

Figure 2.10(a) shows a Doppler spectrum of Ps being excited from n= 1 to n=

2 by the 243 nm UV laser, and subsequently ionized by the IR laser. The width of the

Doppler lineshape is affected by the implantation energy of the positrons (1.5 kV

and 4 kV respectively for the two sets of data) since the higher the implantation

energy, the more collisions the Ps atoms will have with the porous network walls and

will therefore cool down further. Before interacting with the lasers. Figure 2.10(b)

also shows a typical laser excitation delay scan which is performed to optimize the

laser excitation before every measurement. The time at which both lasers are fired

is scanned with a delay generator, in this case we are able to identify the optimum

laser trigger time (shown at 0 in figure 2.10(b), this corresponds to∼450 ns after the
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Surko trap voltages are lowered). It can be seen from the width of the laser delay

curves, that the faster atoms (corresponding to the 1.5 kV implantation energy, blue

circles) have less interaction time with the lasers than the slower atoms, as is to be

expected.

2.2.1 Applying parallel electric and magnetic fields

Figure 2.11: (a) Schematic diagram of the Ps formation and laser interaction region. The
green cone emanating from the porous silica represents Ps formed by im-
planting positrons into the film. (b) Calculated electric potential in the target
region, the legend indicates the magnitude and direction of the electric field in
the area between the target and the grid indicated by the (blue) shaded strip.
The flight time for Ps with a velocity of vz = 105 ms−1 is shown on the top
axis. From [Alonso et al. 2016b]

For all of the experiments described in this project, the applied electric field

in the laser excitation region must be controlled independently of the other exper-

imental parameters. This is achieved by placing a transmissive (∼90 %) tungsten

mesh in front of the porous silica target. This is shown in figure 2.11(a), the voltage
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Figure 2.12: (a) Measurements of f (see equation 2.2) as a function of the electric field
in the interaction region. The measurements were performed for five differ-
ent target voltages (which define the positron pulse implantation energy) and
the field was modified by changing the voltage applied to the grid [see fig-
ure 2.11(a)]). (b) as (a) but displayed as a function of the applied grid voltage,
showing that the increase in f for high positive electric fields is due to grid-
formed Ps alone. The error bars are smaller than the symbols in both plots.
From [Alonso et al. 2016b]

applied to the mesh can be controlled independently of the voltage applied to the

target holder. Therefore, adjusting the grid voltage allows us to change the elec-

tric field in the laser excitation region [the region shaded in blue in figure 2.11(a)

and (b)] without changing the implantation energy of the positrons onto the silica

sample, which is solely controlled by the voltage applied to the target holder.

Figure 2.11(b) shows the electric potential (and the electric field in the excita-

tion region, displayed in the legend) for various different grid biases (and the case

with no grid). As it can be seen, the electric field in the excitation can be controlled,

while the final electric potential (i.e, implantation energy) remains the same.

Even though this tungsten grid allows us to easily control the electric field, it

does add one complication; it can lead to undesired Ps formation on the surface of

the grid. However, this can be avoided by increasing the voltage of the grid beyond

∼ 2 kV. At these energies the positrons do not interact significantly with the surface

of the grid, and the amount of undesirable “grid Ps” is suppressed. This effect can

be seen in figure 2.12 where the ammount of grid Ps was shown to be reduced as a

function of the grid voltage, for a range of different target implantation energies.
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2.3 Detection techniques

2.3.1 Positronium fraction and signal parameter Sγ

The main detection technique used in the experiments reported here makes use of

the annihilation gamma-rays that are produced when Ps self-annihilates, when Ps

is ionized and the released positron directly annihilates when it comes into con-

tact with a solid surface or when Ps hits a wall directly and the positron annihi-

lates. We employ single-shot positron annihilation lifetime spectroscopy (SSPALS)

[Cassidy et al. 2006b]. A fast detector is coupled to an oscilloscope, and the time-

dependent detector anode voltage V (t) is measured directly. This signal is propor-

tional to the amount of annihilation radiation, and the resulting waveform consti-

tutes a lifetime spectrum. Examples of such spectra are shown in figure 2.13. In

the present work on the order of 106 gamma-rays result from each positron pulse,

approximately 5 % of which are subsequently detected, depending on the detector

solid angle described for each measurement. The most common detector used for

these kind of experiments has been for a long time a lead tungstate (PWO) scintilla-

tor, optically coupled to a photo-multiplier tube [Cassidy & Mills 2007] (although

it will be explained in Section 2.3.2 that LYSO scintillators are being used now as

well, yielding signal to noise ratios approximately ×3 higher). The SSPALS time

resolution is determined primarily by the ∼ 12 ns PWO scintillator decay time,

which is sufficient to study processes that occur on the ∼ 100 ns time-scale of

triplet Ps decay.

The SSPALS signal is parametrized by f , the fraction of the lifetime spectrum

in a selected time region, where

f =
∫ C

B
V (t) dt/

∫ C

A
V (t) dt . (2.2)

The time windows are selected depending on the experimental parameters and de-

tectors being used; when we wish to study laser-induced changes in Ps lifetimes that

occur on a short time scales relative to the typical decay rate of the 1 3S1 ground-

state, the time windows used were approximately A = -3 ns, B = 35 ns and C = 450
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ns (for a PWO scintillator, where B = 3× τPWO ' 35 ns, where τPWO is the mean

relaxation time for PWO). However, if we wished to study long-lived states such as

Rydberg states, these time windows would have to be changed. Note that while the

value of f depends on the choice of the time windows (A, B, and C), and is therefore

arbitrary; for certain configurations it depends almost linearly on the positronium

formation fraction, as discussed in [Cassidy et al. 2011a].

We characterize laser-induced effects on Ps decay rates using the parameter

Sγ =
( fBack− fSig)

fBack
, (2.3)

where fBack. refers to background measurements with no lasers present, and fSig.

refers to the signal when the laser is on, as shown in figure 2.13. When there is a
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Figure 2.13: (a) Example of SSPALS lifetime spectra for a PWO scintillator recorded with
the lasers off resonance (continuous gray line) and on resonance (continuous
blue line). (b) Subtraction of background data from signal. These spectra were
recorded at a magnetic field of B = 130 G and an electric field of F = 1330
V/cm. Each set of data is the average of 40 pulses. Shown as vertical red
dashed lines are the positions of the time windows A (-3 ns), B (35 ns), and C
(450 ns).
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magnetic field present (∼ 100 G), if Ps atoms are excited to 2 3PJ levels in zero-

field, and subsequently return to the 1 3S1 level (either via spontaneous or stim-

ulated emission) we would measure Sγ ' 0, because the lifetime spectra are not

significantly altered by the small decrease in the total Ps decay rate. However, if

annihilation occurs as a result of excitation, then we would measure positive values

for Sγ , and conversely, if atoms are excited to states with a longer lifetime than the

background (such as Rydberg states), we would observe negative Sγ values, assum-

ing the applied fields are the same.

2.3.2 SSPALS optimization and use of LYSO vs PWO

A lot of the results presented in this thesis were focused on the production and

study of Rydberg Ps atoms using low-intensity, low-density, positron pulses

[Cassidy et al. 2012a, Jones et al. 2014, Wall et al. 2015]. Since these atoms are

generally long lived [Gallagher 1994], the timing constraints on an appropri-

ate SSPALS detector may be relaxed for Rydberg studies. The ∼ 12 ns de-

cay time of PWO is well-suited for the study of short-lived effects since it al-

lows one to integrate lifetime spectra almost from the moment of Ps atom cre-

ation. With long-lived Rydberg states, however, the annihilation events of in-

terest may occur on completely different time-scales, and the regions of interest

in the corresponding lifetime spectra will change accordingly [Cooper et al. 2015,

Alonso et al. 2016a]. Therefore, for measurements of this kind it can be advanta-

geous to use a slower scintillator with a higher light output. We have tested this

using Cerium doped lutetium yttrium oxyorthosilicate, (Lu2(1−x)Y2xSiO5:Ce), or,

LYSO. LYSO [Cooke et al. 2000] has a useful combination of properties, namely its

short radiation length (∼ 1 cm), high density (8 g cm−3), high light output (∼75%

of NaI), and relatively fast decay time (40 ns).

In order to directly compare the performance of PWO and LYSO, we per-

formed a series of measurements where both detectors were used to record data

simultaneously, in a symmetric arrangement at the same distance from the Ps exci-

tation region. This is indicated in figure 2.14, the solid angles subtended by each

detector relative to the Ps production region were approximately equal. The PMT’s
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Figure 2.14: Schematic layout of the target chamber and gamma-ray detectors used to com-
pare PWO and LYSO detectors. From [Alonso et al. 2016a].

used in each case were different. The LYSO detector was attached to an EMI type

9954KA PMT operated with a supply voltage of −0.9 kV. The PWO was attached

to a Hamamatsu H10570 PMT, operated with a supply voltage of −1.4 kV. These

supply voltages were chosen to avoid PMT saturation and resulted in similar pulse

amplitudes.

The output obtained using LYSO and PWO detectors are shown in figure 2.15.

The integration regions given by A, B and C are selected according to the type of

detector used, and also the processes to be studied. The amount of Ps formed is

related to f (see [Cassidy et al. 2011a]) but numerous factors must be accounted

for before a direct conversion to the actual Ps fraction can be extracted. The spectra

in figure 2.15 have been analyzed using B = 3 × τ , where τ is the scintillator decay

constant (see f values in figure 2.15). This makes it likely that a significant fraction

of the integrated spectrum will be due to photons originating from long-lived Ps

annihilation, as opposed to light from the prompt peak delayed by the scintillator

decay.

Figure 2.16 shows f obtained from the data of figure 2.15 using different values

of of B. These data indicate that if B is too close to the prompt peak events that are

not related to Ps formation are included in the signal, giving a higher f . Conversely,
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Figure 2.15: SSPALS lifetime spectra recorded with PWO and LYSO detectors, with
positrons implanted into a SiO2 or a piece of untreated Cu, as indicated in
the legend. These spectra are the average of 860 individual shots and were
acquired in approximately 15 minutes. The quoted f values were calculated
using the indicated time windows as described in the text and represented by
the color-coded vertical dashed lines and the corresponding labels above, (i.e.,
for PWO the boundaries A, B and C were -10, 36, and 600 ns respectively and
for LYSO the boundaries A, B and C were -10, 120, and 900 ns respectively).
From [Alonso et al. 2016a].

if B is too far away from the peak the signal will miss events that are caused by Ps

annihilation, giving a lower f . For PWO there is a clear increase in the smoothly

varying f when B is less than around 30 ns, indicating that this is the point at which

peak events start to be included.

For LYSO the time at which the faster f increase occurs is less obvious,

but is in the region of B ∼ 150 ns. Thus, the optimal region of integration for

this detector excludes the signal due to Ps decay for around one lifetime, which

is the primary reason why PWO was initially selected for SSPALS experiments

[Cassidy & Mills 2007]. These data demonstrate that f cannot be interpreted di-

rectly as the Ps fraction, since one can never integrate all the way to zero time.
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Figure 2.16: f obtained using different values of B for LYSO and PWO detectors. The
values of A and C were −10 ns and 600 ns respectively for PWO, and
−10 ns and 900 ns for the LYSO detector. The two insets show the region
where peak events stop being included in f as explained in the text. From
[Alonso et al. 2016a].

Moreover, there are other factors that must be included, such as background signals

and the efficiency with different photon energies are detected [Cassidy et al. 2011a].

There are several processes that may increase or decrease Ps decay rates, when

studying such effects using Sγ as the metric it is necessary to adjust the integration

parameters (cf equation 2.2) according to the relevant time scales. That is, the

optimal analysis will differ depending on whether the Ps atoms are being made to

annihilate at a rate that is faster or slower than the unperturbed vacuum rate.

Figure 2.17 shows lifetime spectra measured with both a LYSO and a PWO

detector, obtained with the IR laser tuned to excite n = 2 atoms to the n = 45

level. These atoms (which we cannot resolve spectroscopically [Wall et al. 2015])

are field ionized in an electric field of ∼ 100 V cm−1. The increased annihilation

due to this ionization can be observed most clearly in the difference spectra, shown

for both detectors in figure 2.17 (b). The initial signal (observed for times ≤ 50

ns) is due to laser induced annihilation events, while the later negative dip peaking
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at around 400 ns is due to the absence of annihilation events. Similar profiles are

obtained if the n = 2 Ps atoms are directly ionized using IR light at 729 nm.

The two peaks (also seen with direct ionization) are due to positrons that do

not immediately return to the target and annihilate. These cannot be directly re-

solved with the LYSO detector, although there is a visible shoulder in the difference

curve. This illustrates the fact that there may be some measurements for which the

superior time resolution of PWO might make it a better choice, despite the reduced

efficiency.

Data of the type shown in figure 2.17 can be analyzed to obtain Sγ values

by selecting the most appropriate values of the time windows used to generate the
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Figure 2.17: (a) Single-shot lifetime spectra from LYSO and PWO detectors with the IR
laser tuned to excite n = 2 Ps to n = 45 (λ = 730.45 nm) and (b) the difference
between the laser on and off spectra shown in (a). The spectra are averages of
275 individual shots and are all normalized to the area between −10 ns and
1200 ns. Note that in (b) the PWO early peaks are truncated to better illustrate
the difference in the statistics between the two data sets. The amplitudes of the
first and second peaks are 6 and 10 respectively. From [Alonso et al. 2016a].
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Figure 2.18: (a) The signal Sγ and the SNR (b) obtained from the data shown in figure 2.17
as a function of the integration bound B. From [Alonso et al. 2016a].

f values (see equation 2.3). That is, just as the measurement of the amount of

ground-state Ps present (i.e., f ) can be optimized by choosing B appropriately (see

figure 2.16), so too is Sγ highly dependent on the choice of B. In this case, however,

one has to select B based on the specific process being measured. In general the

values for A and C are fixed by the interval over which annihilation radiation can

be detected, although one can partially reduce the amount of noise in the signal by

restricting C.

Figure 2.18 shows Sγ and the signal-to-noise ratio (SNR) obtained from the

data shown in figure 2.17 as a function of B, in this case, the “noise” is defined as

the uncertainty in the signal parameter Sγ . It is evident from these data that there is

an optimal integration region that enhances not only the magnitude of the signal but,

more importantly, the SNR. It can also be seen from figure 2.19 that the C boundary

does not usually need too much optimization, besides simply checking if it is too

small to include all the features in the spectrum, and not long enough to include

electronic noise and/or ion after-pulses.
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Figure 2.19: (a) The signal Sγ and the SNR (b) obtained from the data shown in figure 2.17
as a function of the integration bound C.

The data shown in figure 2.20 are significantly different to those of figure 2.17.

When longer-lived atoms are generated, the laser-on curves exhibit an increase in

the gamma-ray signal at later times rather than a deficit. Accordingly, the difference

curves are inverted, with a dip at early times indicating fewer annihilations, and a

peak at later times due to increased annihilations following wall collisions. There

is also a small peak evident at around 100 ns, which is due to Ps atoms annihilating

on the grid electrode located around 8 mm from the Ps target (see figure 2.14). The

apparent shift in time of the LYSO difference curve relative to the PWO is due to

the different time response of the detector, and also the fact that the LYSO is able

to detect later events more efficiently than the PWO.

Figure 2.21 shows Sγ and the SNR obtained from the data shown in figure 2.20

as a function of B. This is the same analysis used to generate figure 2.18 but in

this case a negative signal is obtained, since the delayed annihilations are increased
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Figure 2.20: (a) Lifetime spectra recorded simultaneously with LYSO and PWO detectors
with the IR laser tuned to excite n = 2 Ps to n = 12 (λ = 749.84 nm) and
(b) the difference between the laser on and off spectra shown in (a). The
spectra are averages of 400 individual shots and are all area normalized. From
[Alonso et al. 2016a].

by the laser excitation. These data show that maximizing Sγ does not in general

optimize the SNR.

The primary conclusion of these results [figures 2.21(b) and 2.18(b)] is that the

high light output from LYSO offers a significant improvement over PWO in terms

of the SNR, even when Ps is probed at early times. This is demonstrated explicitly

in figure 2.22, which shows the SNR as a function of the data acquisition time.

These data are obtained using optimal time windows. The LYSO SNR is around

a factor of 3 higher than the PWO SNR, indicating that the data acquisition time

could be reduced by almost an order of magnitude without degrading the statistics.

The statistical limitations in any measurement will also be affected by other noise

sources, such as electronic noise from the PMT, RF pick-up from the high voltage
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Figure 2.21: (a) The signal Sγ and the SNR (b) obtained from the data shown in figure 2.20
as a function of the integration bound B. From [Alonso et al. 2016a].

buncher, digitization noise from the oscilloscope, and so on. However, these will be

mostly the same regardless of the type of scintillator used.

As may be seen in figure 2.18 and 2.21, the magnitude of the signal parameter

Sγ depends on the time windows selected. It also differs in the two types of mea-

surements performed (n = 45 and n = 12) because the solid angle subtended by the

detectors are different, making them less sensitive to annihilations occurring at ear-

lier times. Nevertheless, Sγ can be used to monitor relative changes in excited-state

populations, such as may be obtained in laser spectroscopy.

2.4 Time-of-flight event counting algorithm
For some of the experiments described in this thesis Ps atoms traveled large dis-

tances (up to ∼ 1.2m) before being detected [Deller et al. 2016b]. Such flight times

can be on the order of tens of microseconds, and involve placing detectors (LYSO

and NaI scintillators, as well as MCP stacks) far away from the Ps production re-

gion, where SSPALS methods would have been impractical, and thus we used a
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wall. The acquisition rate was 1 Hz. The values of A, B and C used in the
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standard single-event counting routine.

Figure 2.23 shows a waveform recorded by a NaI detector placed 1.2m away

from the Ps formation region. The events being recorded are gamma rays generated

by long-lived Rydberg Ps atoms traveling to the end of a long vacuum tube and

annihilating. For different measurements we used also LYSO detectors in the same

manner. By counting the arrival time of γ-rays registered at the end of the flight

path relative to the positron implantation time, TOF spectra can be obtained.

The detector output was recorded with an oscilloscope, triggered by the trap

dump sequence. The waveforms were recorded in 6 ns time bins for a period of

20 µs.

The occurrence of trigger events was determined by post-processing the

recorded detector waveforms; a trigger was registered if the signal fell below a

threshold of −1 mV for a period of at least 100 ns. The time of the leading edge,

the amplitude, and the width of each trigger event were recorded (see figure 2.23).



2.5. High voltage switching 46

0 2 4 6 8 10 12 14 16 18 20

Time (µs)

−12

−8

−4

0

P
M

T
si

gn
al

(m
V

)

exceed threshold

registered trigger

Figure 2.23: The PMT signal recorded for a single Rydberg-Ps-formation cycle (black).
The sections where the signal exceeds a threshold of−1 mV (dashed line) are
shown in red. The leading edges of above-threshold sections that are at least
100 ns wide are registered as trigger events (blue). From [Deller et al. 2016b].

Since this is leading edge counting, the timing resolution was determined primarily

by the oscilloscope sample interval, rather than the long decay time of the NaI crys-

tal. As the waveforms are recorded in their entirety, the threshold conditions can

be adjusted after-the-fact to minimize true event rejection and reduce the rate for

double-counting or false triggers. The absolute detection rate was usually between

1 and 4 events per shot, and trigger pile-up was therefore negligible. Additionally,

when using this same technique but using different scintillators or making different

measurements, the acceptance parameters of threshold amplitude and width were

modified in each case to minimize the number of background events being regis-

tered.

2.5 High voltage switching
Some of the measurements described in following sections involved the rapid

switching of high voltages, normally from either a high negative or positive voltage

to ground, or vice versa depending on the application, for example, when maximiz-

ing a quadrupole guide efficiency (as described in chapter 6) switching from ground

to a large voltage may be necessary, whereas when producing 2 3S1 states (as de-
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scribed in section 4.2) it is necessary to switch from large voltages to ground. This

was achieved by using solid state high-voltage switches. For most of these mea-

surements we used used a Behlke GHTS 60. These allowed us to change between

two voltages (adding up to 6 kV) with instantaneous currents of ∼ 15 A, meaning

that we could switch such voltages in approximately 40 - 60 ns depending on the

capacitance of the complete Resistor-Capacitor (RC) circuit. It is worth noting that

failure to adhere to the maximum instantaneous current specification of 15 A can

result in the high voltage switches being permanently damaged. In order to mini-

mize this risk, one may add a resistive load (simply a resistor in series between the

switch and the electrode being pulsed) which will change the decay constant of the

RC circuit, and increase the switching time, thus reducing the maximum instanta-

neous current. For some experiments where switching time could be of the order of

∼200 ns, such precaution was taken to prevent damage.

We could measure the voltage being applied to electrodes by splitting the high-

voltage switch output in a tee between a high-impedance (1 MΩ) oscilloscope and

the electrode begin pulsed. The case where the grid and the target electrode volt-

ages are being pulsed is shown in Figure 2.24(a) and the corresponding electric

field (b) when the voltage applied to the grid and target electrodes is switched off

simultaneously (see figure 2.7).

It should be noted that even though there is a small increase in switching speeds

when turning off larger voltages, the main difference arises when switching the

same voltage on different electrodes, such as the grid and target electrode. This is

due to the target electrode possessing a larger capacitance than the grid electrode.

It can be seen in figure 2.24, that if both voltages start off at the same value, and

thus the electric field ~E is zero [blue and red line in (a), resulting in orange line in

(b)], and they are then subsequently turned off by identical switches, the different

switching time for each electrode will generate a non-zero field. This effect can be

minimized by independently switching each electrode at different times to account

for this delay, however, we found that for the relevant experiments experiments

(discussed in section 4.2) this was unnecessary and therefore for most measure-
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ments the target and grid biases were switched off simultaneously, such as those

described in section 4.2 [Alonso et al. 2017b]. This switching technique was also

used for switching large biases on quadrupole electrode structures used for Ps Ryd-

berg guiding [Deller et al. 2016a, Alonso et al. 2017a] as described in chapter 6.



Chapter 3

Theoretical background

Description of the theoretical background outlined in this chapter have been pre-

viously published in several articles, and as such, much of the content and figures

used here were taken from these publications. Contents from section 3.1 describing

the calculations performed to understand the Stark and Zeeman effects on n = 2

positronium were published in the following articles:

• A. M. Alonso, B. S. Cooper, A. Deller, S. D. Hogan and D. B. Cassidy. Con-

trolling Positronium Annihilation with Electric Fields Phys. Rev. Lett., 15,

183401 (2015). doi: 10.1103/PhysRevLett.115.183401.

• A. M. Alonso, B. S. Cooper, A. Deller, S. D. Hogan and D. B. Cassidy.

Positronium decay from n = 2 states in electric and magnetic fields Phys.

Rev. A, 93, 012506 (2016). doi: 10.1103/PhysRevA.93.012506.

While contents from Section 3.2 describing the theoretical background needed to

understand the basic principles of Rydberg-Stark states were published in:

• A. M. Alonso, B. S. Cooper, A. Deller, L. Gurung and D. B. Cassidy. Velocity

selection of Rydberg positronium using a curved electrostatic guide. NIMA,

95, 053409 (2017). doi: 10.1103/PhysRevA.95.053409.

https://doi.org/10.1103/PhysRevLett.115.183401
https://doi.org/10.1103/PhysRevA.93.012506
https://doi.org/10.1103/PhysRevA.95.053409
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3.1 Stark and Zeeman effects in n = 2

To quantify the effect that the electric and magnetic fields in the experiments had

in the rates of Ps annihilation, the combined Stark and Zeeman effects for states

with n = 2 were calculated. These calculations treated all singlet and triplet terms,

and their associated fine structure, and were performed by determining the eigen-

values and eigenvectors of the complete Hamiltonian matrix in an |nS`JMJ〉 ba-

sis, following the convention of Bethe and Salpeter [Bethe & Salpeter 1957]. Here

n is the principal quantum number, S is the total spin quantum number of the

electron-positron pair, ` is the single particle orbital angular momentum quan-

tum number, J = |~J|= |~̀+~S| is the total angular momentum quantum number,

and MJ is the projection of ~J onto the z-axis with which the applied electric and

magnetic fields are aligned. The approach used in these calculations is similar

to that implemented previously by Curry [Curry 1973], and Dermer and Weisheit

[Dermer & Weisheit 1989].

In the n = 1 ground-state of Ps, the energy interval between the sin-

glet and triplet terms is Ehfs(n = 1)/h = 203.3942 GHz [Kniehl & Penin 2000,

Melnikov & Yelkhovsky 2001, Hill 2001, Ishida et al. 2014] (see figure 1.1). Be-

cause the magnitude of the spin-spin interactions depends on the overlap of the

electron and positron wavefunctions, for values of n > 1 the energy splittings re-

duce, scaling with n−3 [Gallagher 1994]. For n = 2, the energy intervals between

the singlet and triplet terms and the fine-structure splittings between each 2 3PJ level

are indicated in figure 1.1.

3.1.1 Calculation methods

In the presence of parallel electric and magnetic fields, the Hamiltonian, Ĥ, for Ps

atoms can be expressed in the form

Ĥ = Ĥ0 + ĤZ + ĤS, (3.1)

where Ĥ0 represents the unperturbed Hamiltonian including the fine-structure con-

tributions; ĤZ = −~µmag ·~B is the Zeeman Hamiltonian arsising from the presence
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of a magnetic field ~B, where ~µmag = ~µe− +~µe+ is the combined magnetic moment

of the electron-positron pair; and ĤS = −e~F ·~r is the Stark Hamiltonian resulting

from the interaction with an external electric field ~F , where e is the electron charge

and~r is the position vector.

To express Ĥ in matrix form for levels with n = 2, we consider the |nS`JMJ〉
basis which gives rise to a 16×16 matrix. Because of the comparatively weak fields

used in the experiments, only n = 2 levels need be considered in this basis (since

there will be no overlap with the neighboring n = 1 and n = 3 states). The 16 basis

states therefore represent the individual MJ sublevels associated with each level in

the upper part of figure 1.1. In this basis, Ĥ0 is a diagonal matrix and the energies

of the diagonal elements are those in figure 1.1.

For a magnetic field ~B = (0,0,B) acting in the z-direction, the Zeeman Hamil-

tonian takes the form

ĤZ = geµBŝze−B−geµBŝze+
B, (3.2)

where ŝze− (ŝze+
) is the projection operator of the electron (positron) spin onto the

z-axis, ge is the electron (≡ positron) spin g-factor, and µB is the Bohr magneton.

Because of the equal masses of the electron and the positron, the magnetic mo-

ment associated with the net orbital angular momentum in Ps is zero. Therefore the

Zeeman interaction is independent of ~̀ [Curry 1973]. The matrix corresponding to

equation 3.2 contains off-diagonal elements coupling sublevels with equal values of

` and MJ , and values of S that differ by ±1, i.e., the magnetic field couples singlet

and triplet terms. The matrix elements between sublevels |nS`JMJ〉 and |nS′`′J′M′J〉
can be expressed [Dermer & Weisheit 1989] as:

〈nS′`′J′M′J|ĤZ|nS`JMJ〉= µBBδ`′,`(−1)`+MJ [(−1)S+S′−1]
√

3(2J′+1)(2J+1)

×

 J′ 1 J

−M′J 0 MJ

S′ `′ J′

J 1 S

 , (3.3)

where δx,x′ is the Dirac delta function, and the term in curved (curly) brackets is a
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Wigner 3J (6J) symbol.

In an electric field ~F = (0,0,F) aligned parallel to the magnetic field, the Stark

Hamiltonian contains off-diagonal elements coupling sublevels with equal values

of S and MJ , and values of ` that differ by ±1. The matrix elements between pairs

of sublevels take the form [Dermer & Weisheit 1989]

〈nS′`′J′M′J|ĤS|nS`JMJ〉 = eF δS′,S(−1)S+1+M′J
√
`max(2J′+1)(2J+1)

×

 J′ 1 J

−M′J 0 MJ

S′ `′ J′

1 J `

〈n′`′|r|n`〉, (3.4)

where `max =max(`′, `), and 〈n′`′|r|n`〉 is a radial integral. For n= 2 and |`′−`|= 1,

|〈n′`′|r|n`〉|= 3
√

3aPs, where aPs = 2a0 is the Ps Bohr radius.

Combining the Zeeman and Stark matrices with the diagonal zero-field matrix

allows the n = 2 energy level structure to be determined in parallel fields of all

magnitudes relevant to the experiments. This is achieved by calculating the set

of eigenvalues, Ei, labelled with the index i, of the complete Hamiltonian matrix

for each field strength of interest. Spectral intensities and decay rates can then be

obtained from the coefficients, Ci, j, of the corresponding eigenvectors, where j is

an index denoting each |nS`JMJ〉 basis state.

Under the electric dipole selection rules, optical transitions from the 1 3S1 and

1 1S0 levels of the ground-state, to excited n= 2 states only occur if ∆S= 0, ∆`=±1

and ∆J = 0,±1 (0 = 0) [Bethe & Salpeter 1957]. In photoexcitation the values of

MJ of the excited sublevels can be controlled by adjusting the polarisation of the

laser radiation with respect to the electric and magnetic fields. For laser radiation

propagating perpendicular to both fields, if it is linearly polarized parallel to the axis

defined by the fields (z-axis) ∆MJ = 0 transitions will result [see, e.g., figure 3.1(a)],

while if it is linearly polarized perpendicular to this axis ∆MJ =±1 transitions will

result [see, e.g., figure 3.1(b)]. The resulting transitions between states |nS`JMJ〉
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and |n′S′`′J′M′J〉 have transition dipole moments, Mn′S′`′J′M′J ,nS`JMJ
, such that

Mn′S′`′J′M′J ,nS`JMJ
= (−1)J−MJ

√
(2J+1)(2J′+1)

×

 J 1 J′

−MJ ∆MJ M′J


×

 ` J S′

J′ `′ 1

〈2`′|er|1s〉. (3.5)

3.1.2 Calculated n = 2 energy-level structure

A Stark energy level diagram, calculated for the n = 2 states of Ps in electric fields

up to 3 kV/cm when B = 0 G, is displayed in figure 3.2(a). In fields below 1 kV/cm

in this figure, the S and P terms of each spin multiplicity exhibit quadratic Stark

energy shifts as they gradually mix with each other. In higher fields, linear Stark

shifts dominate when the interaction with the electric field becomes greater than the

spin-spin and spin-orbit interactions. The effect of a small magnetic field oriented

parallel to the electric field on the n = 2 Stark energy-level structure can be seen in

figure 3.2(b).
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Figure 3.1: Allowed electric dipole transitions from each 1 3S1 sublevel of Ps to all 2 3PJ

sublevels, for laser radiation linearly polarized (a) parallel (∆MJ = 0), and
(b) perpendicular (|∆MJ| = 1) to the laboratory-fixed quantization axis. From
[Alonso et al. 2016b].
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Comparing figure 3.2(a) and (b) shows that the weak magnetic field of 130 G

does not significantly affect the overall Stark structure.

3.1.3 Excited-state decay rates

To obtain more detailed information on the rates of decay of the excited n = 2

eigenstates in the presence of the combined electric and magnetic fields, the fluo-

rescence and annihilation rates of Ps atoms initially prepared in the 1 3S1 level and

subsequently photoexcited via electric dipole allowed 1 3S1 → 2 3PJ single-photon

transitions were calculated. This was done by first determining the rates for fluores-

cence, Γfl, and direct annihilation, Γann, of each n= 2 sublevel in the presence of the

fields, using the data in table 1.1, together with the coefficients of the eigenvectors,
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Figure 3.2: Dependence of the relative energies of all n = 2 eigenstates in Ps on electric
field strength (a) in the absence of a magnetic field, and (b) in a parallel mag-
netic field of B = 130 G. From [Alonso et al. 2016b].
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Ci, j, of the Hamiltonian matrix, such that

Γfl, i = ∑
j

C2
i, j Γfl, j (3.6)

and

Γann, i = ∑
j

C2
i, j Γann, j. (3.7)

Following this procedure the total lifetime τtot,i , of each eigenstate could be deter-

mined,

τtot,i = (Γfl,i +Γann,i)
−1. (3.8)

These calculated excited-state lifetimes are displayed in figure 3.3(a) and (b), for

cases in which B = 0 G and B = 130 G, respectively. From these data it can be seen

in both cases that, as the strength of the electric field increases, mixing of the S and P

terms leads to a reduction in the total lifetimes of the Stark states that adiabatically

evolve, from high to low electric field, to the 2 3S1 level. The lifetimes of these

states reduce from 1 µs when F = 0 V/cm, to < 10 ns when F & 1 kV/cm. On the

other hand, the lifetime of the short-lived 2 1S0 level, which decays predominantly

by direct annihilation, increases slightly with increasing electric field.

In the presence of an electric field, the lifetimes of the 2P states evolve in three

ways: (1) The total lifetimes of the 2 3PJ levels that mix with the 2 3S1 level increase;

(2) levels which remain unmixed in the field, i.e., those for which |MJ|= 2, maintain

their field free 3.19 ns lifetime; and (3) the lifetimes of the levels that mix with the

2 1S0 level [e.g., the 2 1P1 (MJ = 0)], are reduced, in this case from 3.19 ns when

F = 0 V/cm to ∼ 2 ns when F = 3 kV/cm.

The effect of singlet-triplet mixing, induced by the presence of the magnetic

field of B = 130 G, on the lifetimes of each of the Stark eigenstates can be seen in

figure 3.3(b). The principal difference between this case and that in figure 3.3(a) is

seen close to F = 585 V/cm, the field at which the avoided crossing in figure 3.2(b)
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Figure 3.3: Dependence of the combined fluorescence and annihilation lifetimes of the n =
2 eigenstates in Ps on electric field strength for (a) B = 0 G, and (b) B = 130 G.
The term symbols associated with the field-free eigenstates are indicated on the
left side of each panel. From [Alonso et al. 2016b].

occurs. In this field, the slightly reduced lifetime of the 2 1P1(MJ = 0) sublevel that

arises when it mixes with the 2 1S0 level in the electric field, causes a subsequent

reduction in the lifetime of the 2 3P2(MJ = 0) sublevel with which it interacts when

the magnetic field is present.

The experiments described in later sections all involved exciting ensembles of

Ps atoms, initially in the 1 3S1 level, via single-photon transitions to n = 2 eigen-

states with 3PJ character. As a result, the excited state lifetimes of importance are

those of the states which are accessible via this photoexcitation scheme. The life-

times of these states can be identified in figure 3.4. The electric field dependence of
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Figure 3.4: The electric field dependence of the total lifetimes (in the range from 2.5 ns
to 25 ns) of the n = 2 eigenstates accessible by single-photon excitation from
the 1 3S1 level when B = 130 G [as in Figure 3.3(b)]. The color scale repre-
sents the relative strength of the electric dipole transitions for laser radiation
linearly polarised (a) parallel (∆MJ = 0), and (b) perpendicular (|∆MJ| = 1)
to the z-axis with which the electric and magnetic fields are aligned. From
[Alonso et al. 2016b].

the lifetimes of the n = 2 eigenstates included in this figure are identical to those in

figure 3.3(b), while the color scale represents the relative 1 3S1 → 2 3PJ transition

dipole moment to each state, calculated using equation 3.5. From this data it can be

seen that for ∆MJ = 0 transitions, driven with laser radiation polarized parallel to

the axis defined by the electric and magnetic fields [figure 3.4(a)], a slight reduction

in the total lifetime of some of the accessible n = 2 eigenstates from their field-free

values of 3.19 ns occurs in an electric field of 585 V/cm, as a result of mixing with

states possessing 2 1S0 components. However, in higher fields, transitions to longer-

lived states with partial 2 3S1 character also play an important role. For |∆MJ| = 1

transitions, driven with laser radiation polarized perpendicular to the fields, only

a very slight change in the direct n = 2 decay rates occurs in weak electric fields,

while in strong fields the accessible sublevels to which the strongest transitions oc-

cur do not exhibit lifetimes significantly longer than those of the field-free levels.

The dependence of the total lifetimes of the n = 2 eigenstates on the electric
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dotted magenta curve) annihilation rates. The horizontal dashed lines in (c)
and (d) corresponds to the 7 MHz annihilation rate of the 1 3S1 level. From
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and magnetic fields displayed in figure 3.3 and figure 3.4 does not, however, provide

a complete picture of Ps annihilation in experiments where there was only n = 2 ex-

citation. The dominant contribution to this results from spontaneous emission from

excited states with 2 1P1 character to the 1 1S0 level, which rapidly self-annihilates.

To identify the role of this process and its significance when compared to the other

possible Ps decay pathways, spectral-intensity–weighted average decay rates were

determined for a range of electric fields typically used in the experiments. These

average decay rates, presented in figure 3.5, were calculated by assuming an equal

laser intensity across the frequency range encompassed by the manifold of n = 2

levels in the presence of the fields. Displayed in figure 3.5(a) and (b) are weighted-

average total decay rates calculated for each laser polarisation from the values of

Γfl, i and Γann, i (see equation 3.6 and equation 3.7), and the squares of the corre-
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sponding transition dipole moments, Mi,nS`JMJ , where

Mi,nS`JMJ = ∑
j

C2
i, j M j,nS`JMJ , (3.9)

and |nS`JMJ〉 are the sublevels of the 1 3S1 ground state. By comparison with the

weighted-average values of the fluorescence rate to the 1 3S1 level, Γfl(1 3S1), also

included in these figures, these data indicate that for both laser polarizations the

decay of the accessible excited states is dominated, in all electric fields considered,

by the contribution from fluorescence via this decay pathway. However, as can be

seen in figure 3.5(c) and (d), for particular combinations of electric field strength

and laser polarisation, decay by fluorescence to the 1 1S0 is also of importance.

This is particularly apparent in a field of 585 V/cm and in fields exceeding 1 kV/cm

when the laser polarisation is selected to drive ∆MJ =±1 transitions.

3.2 Rydberg-Stark states

In hydrogenic atoms, states with the same n but different ` values are degenerate

in the absence of external fields. Consequently, even very weak electric or mag-

netic fields, both of which are invariably present in our experiments, can lead to

complete ` mixing within an n manifold [Merkt & Zare 1994]. In these conditions

it is often more convenient to consider the atomic structure in terms of hydrogenic

Stark states. If the Schrödinger equation is solved in parabolic coordinates the re-

sulting eigenstates are labeled according to their parabolic quantum numbers n1

and n2, and the Stark states may then be characterized using the index k = n1−n2

[Gallagher 1994], thus each Stark state may be characterized in the |n,n1,n2,m〉 ba-

sis, where n = n1 + n2 + |m|+ 1. For each value of n and the azimuthal quantum

number m, the allowed values of k range from −(n−|m|−1) to +(n−|m|−1) in

intervals of 2.

In an electric field ~F = (0,0,Fz), the energy shifts of these Stark states can be
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expressed analytically to fourth order as [Damburg & Kolosov 1983, Hogan 2013]

EStark =
3
2

nkeaPsFz−
1
16

n4(17n2−3k2−9m2 +19)
e2a2

Ps
2hcRPs

F2
z . . .

+
3

32
n7k[23n2− k2 +11m2 +39]

e3a3
Ps

(2hcRPs)2 F3
z . . .

− 1
1024

n10[5487n4 +35182n2−1134m2k2 +1806n2k2−3402n2m2 . . .

+147k4−549m4 +5754k2−8622m2 +16211]
e4a4

Ps
(2hcRPs)3 F4

z (3.10)

where e is the charge of the electron, and aPs and RPs are the Bohr radius and

Rydberg constant corrected for the reduced mass of Ps, respectively. Stark shifts

for n = 14 Ps atoms with m = 1, calculated using this expression, are shown in
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Figure 3.6: Stark structure at n = 14 in Ps. Each Stark state, labeled with the index k (see
text for details), is displayed for fields in which the ionization rate is < 1010 s.
The thicker sections of each curve indicate the fields for which the ionization
rate ranges from 108 s−1 to 1010 s−1. From [Alonso et al. 2017a].
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figure 3.6.

Since the energy shift of an electric dipole in an electric field ~F is

[Griffiths 2012]

EStark = −~µelec ·~F , (3.11)

comparison with equation 3.10 indicates that, to first order, an electric dipole mo-

ment,~µelec, can be associated with each Rydberg-Stark state such that [Gallagher 1994],

~µelec = −3
2

nk eaPs. (3.12)

These large static electric dipole moments allow forces to be exerted on atoms in

these states using inhomogeneous electric fields [Hogan 2016]. In a spatially inho-

mogeneous electric field the resulting force is

~f = ∇(~µelec ·~F). (3.13)

The magnitude of this force therefore depends directly on the gradient of the elec-

tric field. In exploiting such forces to control the translational motion of Rydberg

atoms the greatest accelerations that can be achieved using time-independent elec-

tric potentials are limited by field ionization of the Rydberg states. The tunnel

ionization rate, Γnn1 n2 m(Fz) for a Rydberg-Stark state in an electric field, is given

by [Damburg & Kolosov 1983]

Γnn1 n2 m(Fz) =
2hcRPs

h̄
(4C)2n2+m+1

n3 n2!(n2 +m)!
exp
[
−2

3
C− 1

4
n3 eaPs Fz

2hcRPs

(
34n2

2 +34n2m

+46n2 +7m2 +23m+
53
3

)]
, (3.14)

where

C =
1

eaPs
√

2hcRPs

(−2Enn1 n2 m)
3/2

Fz
, (3.15)
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and Enn1 n2 m = −[hcRPs/(n2)]+EStark, is the total energy of the state with respect

to the ionization limit, in the presence of the electric field. The Stark map pre-

sented in figure 3.6 is displayed for fields up to those in which the ionization rate

exceeds 1010 s−1. The thicker sections of each curve indicate the fields for which

the ionization rate ranges from 108 s to 1010 s.



Chapter 4

Spectroscopy of n = 2 positronium

The experiments and results discussed in this chapter have been previously pub-

lished in several articles, and as such, much of the content and figures used here

were from these publications. Contents from section 4.1 describing the effects of

electric and magnetic fields on the annihilation of positronium have been published

in the following articles:

• A. M. Alonso, B. S. Cooper, A. Deller, S. D. Hogan and D. B. Cassidy. Con-

trolling Positronium Annihilation with Electric Fields. Phys. Rev. Lett., 115,

183401 (2015). doi: 10.1103/PhysRevLett.115.183401.

• A. M. Alonso, B. S. Cooper, A. Deller, S. D. Hogan and D. B. Cassidy.

Positronium decay from n = 2 states in electric and magnetic fields. Phys.

Rev. A, 93, 012506 (2016). doi: 10.1103/PhysRevA.93.012506.

While contents from section 4.2 describing the production of positronium atoms in

the 2 3S1 state were published in:

• A. M. Alonso, S. D. Hogan and D. B. Cassidy. Production of 2 3S1 positron-

ium atoms by single-photon excitation in an electric field. Phys. Rev. A, 95,

033408 (2017). doi: 10.1103/PhysRevA.95.033408.

https://doi.org/10.1103/PhysRevLett.115.183401
https://doi.org/10.1103/PhysRevA.93.012506
https://doi.org/10.1103/PhysRevA.95.033408
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4.1 Stark and Zeeman effects for n = 2 positronium

It is essential for our experiments to have a solid understanding of annihilation and

decay dynamics of Ps in intermediate excited states, such as n = 2. This is impor-

tant because all of our optical spectroscopy experiments (including manipulation

of Rydberg states) start by exciting Ps from the ground state into n = 2. When

performing similar experiments with other atomic species one needs to have an un-

derstanding of the energy level structure of whichever atom is being studied, and

the fluorescence decay rates of each of these states to lower energy levels, however,

when dealing with Ps, it is necessary to be equally mindful of the annihilation decay

rates, since in some cases these are much higher than the fluorescence decay rates.

Such characteristic self-annihilating nature has many effects that need to be

taken into account when studying Ps. Virtual annihilation has a large impact in the

energy level structure of Ps [Ferrell 1951], but it is also important to consider real

annihilation events for Ps, since these can be measured by detecting the gamma rays

emitted by the annihilation of the positron-electron pair.

In the experiments outlined in this section, we used a 1 3S1 → 2 3PJ excitation

scheme where we controlled the laser polarization. The degree of polarization was

controlled by passing the laser beam through a half-waveplate, which rotates the

polarization of the beam, and subsequently passing the beam through a Glan-Taylor

beamcube which was able to achieve > 95% linear polarization purity. Figure 4.1(a)

shows the approximate detector placement for the data shown in this section, and

(b) displays the target-grid arrangement used to control the electric field in the exci-

tation region. We applied parallel electric and magnetic fields to control the amount

of Zeeman and Stark mixing, and thus the admixture of excited states in n = 2 with

different orbital angular momentum and spin multiplicity. When the electric and

magnetic fields were tuned to maximize the amount of 2 1P1 character of the excited

eigenstate, while still maintaining efficient excitation from the 1 3S1 level, decay to

the short-lived 1 1S0 level could occur, leading to rapid annihilation. Similarly, opti-

cal excitation to mixed states with 2 1S0 character result in direct annihilation from

the excited state. Both of these mechanisms allowed us to use this technique as a de-
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Figure 4.1: Positronium formation and excitation region, showing the positions of the two
detectors (a) and the target and grid electrode arrangement (b). The shaded
green regions represent the divergent Ps beam profile, as collimated by the grid
electrode. From [Alonso et al. 2017b].

tection method. Conversely, controlling the fields in such a way as to maximize the

amount of 2 3S1 character in the excited state leads to an increase in the annihilation

lifetime; this will be shown in section 4.2.

Following the methods outlined in section 3 the Stark energy level structure

can be computed for a range of fields. The experiments outlined in this section

were performed in a magnetic field of 130 G (unless stated otherwise). Figure 4.2(a)

shows the pure Stark effect on the n = 2 manifold, with no Zeeman terms.

The effect caused from adding a relatively-weak parallel magnetic field of

130 G is shown in figure 4.2(b), the change in the overall dependence of the en-

ergy levels on the electric field is not very significant. However, there is a particular

region of interest when comparing figure 4.2(a) and (b) that allows us to optimize

the signal caused by this excitation scheme. When the electric field is 585 V/cm,

it can be clearly seen that what was an exact crossing when B = 0 G, becomes an

avoided crossing when a magnetic field is applied. This effect is caused by the ini-

tial singlet-triplet (Zeeman) mixing between the 2 1P1(MJ = 0) and 2 3P2(MJ = 0)

levels (see section 3.1) which causes the electric field .

This effect can be clearly seen in figure 4.2(c). The eigenstates that would

adiabatically evolve to be 2 1P1(MJ = 0) and 2 3P2(MJ = 0) in zero field, are ap-
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proximately 50 % mixed with each other at this electric field, meaning that there

is still sufficient triplet (2 3P2) character for the excitation to be efficient, but in

addition, the significant amount of singlet (2 1P1) character makes it possible for

the excited state to radiatively decay to the short-lived singlet ground level (1 1S0),

and self-annihilate almost instantly (125 ps). Therefore, by tuning the fields to

this specific configuration in our experiment, we are able to enhance the amount of

long-lived triplet Ps atoms that decay into short-lived singlet atoms, thereby gen-

erating an identifiable signal via timing techniques (see section 2.3 for SSPALS

method). It should be noted that when the electric field is ∼ 585V/cm as shown

in figure 4.2(c), the effect is maximized, but nevertheless it will still be present at

other fields (including 0 V/cm), and so making the electric field ∼ 585V/cm is sim-

ply an optimization for that given magnetic field (130 G). As discussed and shown

in section 4.1.2 this effect can be seen at other electric field values.

4.1.1 Monte Carlo simulation of positronium annihilation

In order to obtain an estimate of the experimentally-measured Sγ parameter (see

section 2.3) at different electric fields, a Monte Carlo simulation was performed.

As a first step, an initial ensemble of Ps atoms was considered to be in the triplet

ground state 1 2S1 at t = 0. During a short period of time allowing for the Ps atoms

to diffuse through the porous silica, the ensemble of atoms was allowed to evolve

normally, with a lifetime of 142 ns and using Monte Carlo methods to determine

the number of atoms that annihilated after each time step of 1 ns. When an atom

was selected to undergo annihilation, it was removed from the ensemble. Then the

Ps atoms were considered to have escaped the silica target porous network and into

the laser excitation region, where a fraction of them were considered to be excited

into eigenstates with 2 3PJ character.

Four different channels were considered for the excited atoms. These are de-

picted in figure 4.3. (1) Decay by fluorescence to the long-lived 1 3S1 level, the

atoms would then be assigned a lifetime of 142 ns again, and would not be removed

from the simulation. (2) Decay by fluorescence to the short-lived 1 1S0 state, these

atoms would then be considered to instantly annihilate (and thus be removed from
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the simulation), and a gamma-ray would be counted. (3) Direct annihilation from

n = 2 due to 2 3S1 character, and (4) direct annihilation from n = 2 due to 2 1S0

character, in both of these cases the Ps atoms would be removed from the simula-

tion and a gamma-ray would be counted, this process was repeated each time step

until reaching t ∼ 1 µs. The counted gamma-rays were then convoluted with a de-

tector response of 12 ns (since the data shown in this section was recorded using a

PWO detector, see section 2.3). Figure 4.4 shows an example of such decay curve

obtained with this method. In this case, the implantation of the positron pulse and

the initial formation of p-Ps was not simulated, and instead, the background f value

was made to match the experimental value by simply adding an arbitrary value to

the total area under the curve, i.e.

fcalc. =

∫C
B V (t) dt∫C

A V (t) dt +Pback.
, (4.1)

where Pback. is the background value being added to account for the “prompt peak”.

Changing this value accordingly makes the background f in figures 4.5(a) and

4.6(a) match with the experimental background when there is no “grid Ps”.
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Figure 4.4: Decay curve generated using Monte-Carlo methods described in the text. The
red line represents the raw gamma ray count, and the green line is the result
after the counts have been convolved with a detector response decay time of
12 ns. The integration bounds used to calculate the f values and Sγ values are
shown as vertical lines. The values of f were made to match the experimen-
tal background values (as shown in figure 4.5 and 4.6) by adding an arbitrary
number to the total area under the curve, this accounts for the gamma rays from
direct annihilations when the positron pulse is implanted and for p-Ps forma-
tion.

This method allowed for a simulated Ps decay curve to be obtained, and from

it values of Sγ could be calculated by integrating the signal in the appropriate time

windows (see section 2.3.2).

4.1.2 Electric field dependence

The main result of this section is the controlled mixing of short-lived and long-lived

n = 2 levels of Ps using magnetic and electric fields. Single-shot lifetime spectra

were recorded for different electric fields and with the 1 3S1 → 2 3PJ excitation

laser having two different polarizations, ∆MJ = 0 and |∆MJ| = 1. Sγ values were

determined for each configuration, the excitation pathways allowed by the two po-
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Figure 4.5: (a) Measurements and results of Monte Carlo calculations of the delayed frac-
tion ( f ) of the annihilation signal with (red circles) and without (gray squares)
the laser radiation present as a function of the applied electric field, for laser ra-
diation polarized linearly parallel to the z-axis. (b) Dependence of the measured
Ps annihilation signal (Sγ ) on the electric field for with a constant magnetic field
of ∼130 G. The calculated values of f and Sγ incorporate only experimental
parameters and have not been arbitrarily scaled. From [Alonso et al. 2015].

larizations are represented by figure 3.1(a) and (b) respectively.

The Sγ values are shown in figure 4.5(b) and 4.6(b), where the structures ob-

served are in qualitative agreement with the calculated effects of the Stark and Zee-

man interactions discussed in section 3.1 and their implementation into the simu-
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lations described in section 4.1.1. The dependence of the measured and calculated

Sγ values on the electric field and laser polarizations are similar, indicating that the

underlying physical processes are correctly interpreted. In particular, the peaks at

585 V/cm are clearly due to the mixing between singlet and triplet levels at the

avoided crossing [see figure 4.2(c)], and the negative Sγ values correspond to the

increased lifetime due to the 2 3S1 level mixing with the 2 3PJ levels. Note that

the positions of the Stark-tuned intensity maxima at 585 V/cm in the experimental

data are not exactly symmetric, with the negative-field peak shifted slightly. This

may be due to the presence of secondary electrons generated by the positron pulse

[Overton & Coleman 1997] or the production of photoelectrons by the UV laser

[Hauri et al. 2010], which could distort the field in the interaction region.

The calculated f values are scaled by the parameter Parb. to match the mea-

sured background values, though it is worth noting that the formation of “grid Ps”

was not included in the simulations, and therefore the background and signal f

are symmetric, however, since in the experiment the amount of grid Ps generated

is independent of the laser being on or off resonance, when Sγ values are calcu-

lated, the effect of such grid Ps is subtracted away, and symmetry is recovered in

the experimental data, and maintained in the calculated data. That being said, the

calculated Sγ amplitudes should therefore also match. The fact that they do not

suggests that there are additional mechanisms that have not been accounted for in

the Monte Carlo model. These may be related to optical pumping processes that

would excite atoms to states that could be magnetically quenched further, and thus

could contribute to the disparity in the magnitude of the Sγ signal compared to the

experimental data.

Figure 4.7 shows spectra encompassing the 1 3S1 → 2 3PJ transitions that were

measured in three different static electric fields (F = 0, 585, and 3000 V/cm) with

the UV laser radiation polarized linearly parallel to the z-axis (∆MJ = 0). In the

highest of these fields we expect no quenching. Under these conditions photoion-

ization of the 2 3PJ atoms can be used to generate a gamma-ray signal (as can be

seen in the green data points in figure 4.7, where controlled Stark mixing is di-
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Figure 4.6: (a) Measurements and results of Monte Carlo calculations of the delayed frac-
tion ( f ) of the annihilation signal with (red circles) and without (gray squares)
the laser radiation present as a function of the applied electric field, for laser
radiation polarized linearly perpendicular to the z-axis. (b) Dependence of
the measured Ps annihilation signal (Sγ ) on the electric field for with a con-
stant magnetic field of ∼130 G. The calculated values of f and Sγ incorpo-
rate only experimental parameters and have not been arbitrarily scaled. From
[Alonso et al. 2015].
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rectly compared to photoionization using an additional green laser (λ = 532nm,

with fluence of approximately ∼ 130 mJ cm−2) to excite Ps from n = 2 to be-

yond the ionization limit). The cross section for this process is approximately 106

times lower than that of the 1 3S1 → 2 3PJ excitation [Bethe & Salpeter 1957],

and for typical experimental conditions pulse energies of ∼ 10 mJ per pulse are

required [Fee et al. 1991]. These high energies may not always be acceptable, for

example in a cryogenic system, or if delicate Ps formation targets are used (e.g.,

[Andersen et al. 2015]).

Photoionization can always be made more efficient than magnetic quenching

(with or without Stark mixing), since one can saturate the process. However, from

a practical point of view, it can be very convenient to optimize an excitation process

via magnetic quenching, independently of any subsequent ionization process.

In some cases longer-lived 2 3S1 components may be mixed with the 2 3PJ
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Figure 4.7: Spectra encompassing the 1 3S1 → 2 3PJ transitions in a range of electric fields.
The data were recorded using laser radiation polarized parallel to the electric
field (∆MJ = 0). For one scan (UV + Green) a 532 nm photoionization laser
was also present to directly compare magnetic quenching and ionization sig-
nals. The noticeable Lamb dip [Demtröder 2003] in both the ionization and
quenching lineshapes is attributed to UV radiation reflected from uncoated vac-
uum windows. From [Alonso et al. 2016b].
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states, leading to an increase in their lifetime. By selecting the polarization of the

laser radiation to be parallel to the electric field (see figure 3.4), excitation to states

with a significant 2 3S1 component can be optimized. We used this information

to produce Ps atoms in the 2 3S1 state using single photon excitation, these results

outlined in the next section.

4.2 Production of 2 3S1 positronium

Making use of the quenching mechanism described in the previous section, and

utilizing fast high-voltage switching, it is possible to produce ensembles of pure

2 3S1 states of Ps. The results shown in section 4.1.2 indicate that it should be

possible to produce 23S1 atoms by single photon excitation. This process, which is

ordinarily forbidden by electric dipole selection rules (e.g., [Demtröder 2003]), is

made possible by exciting Ps atoms in an electric field, so that Stark-mixing adds

some P character to 23S1 states; for the remainder of this section we shall refer to

these mixed states as 2 3S′1 states. If the electric field in which they are produced is

subsequently reduced to zero adiabatically, 2 3S′1 states can evolve into pure 2 3S1

states.

In order to characterize 2 3S1 production we define ε2S as the fraction of in-

cident positrons that ultimately form 2 3S1 atoms, εPs, the fraction of incident

positrons that form 1 3S1 Ps atoms, and εex, the fraction of available atoms that

are excited. In general we may write ε2S = εPs× εex× εQ, where εQ refers to the

fraction of excited atoms that subsequently form 2 3S1 states. For convenience in

the following we assume εPs = 0.3 for all cases, although it can vary considerably

depending on the Ps formation target used [Schultz & Lynn 1988].

This section describes our method for generating pure 2 3S1 atoms by adiabatic

extraction of Stark-mixed states from an electric field to a field-free region. Ps

atoms were optically excited in parallel electric and magnetic fields, except in this

case the electric field is turned off immediately after the excitation has occurred by

switching off both of the biases in the target and grid electrodes using high voltage

switches, as explained in section 2.5 and shown in figure 4.8 for the fields relevant
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Method ε2S(%) Comments Ref.

e+-metal 0.05 clean Cu(110) [Schoepf et al. 1992]

e+-metal 0.38 untreated W [Steiger & Conti 1992]

e+-metal 0.47 untreated Au [Day et al. 2001]

e+-gas 1.1 H2 gas [Laricchia et al. 1985]

1 3S1→ 2 3S1 5.3 Doppler-free [Haas et al. 2006]

3 3PJ → 2 3S1 0.9 εex = 0.25 [Aghion et al. 2016]

2 3S′1→ 2 3S1 1.9 εex = 0.25 [Alonso et al. 2017b]

Table 4.1: Production efficiencies of 2 3S1 Ps atoms using different techniques. For cases
that involve exciting ground state atoms, an experimentally realistic Ps formation
fraction of εPs = 30 % has been assumed. The 2 3S′1 → 2 3S1 case does not
include losses due to field switching times. From [Alonso et al. 2017b].
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Figure 4.8: Time-dependence of the electric fields in the Ps excitation region, generated by
switching off the target and grid electrode potentials. The shaded vertical bar
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applied potentials. From [Alonso et al. 2017b]
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to the measurements described here. If this is done on a time scale comparable

with the lifetime of the 2 3S′1 states, that they can evolve into pure 2 3S1 states.

The efficiency with which this can be accomplished is limited by several factors

which are discussed below; we estimate that in the present experiments we obtain

ε2S ≈ 0.2 %.

As it can be seen from the yellow line in figure 4.8 where the initial field is

0 V/cm, if the target bias and the grid bias are switched at the same time (see fig-

ure 4.1 for relative target and grid positions), due to the differing capacitance of

each electrode and thus the different switching time, the field during switching will

not be zero. If laser excitation is performed during this switching cycle it will affect

the electric field in the excitation region causing Stark broadening of the Rydberg

lineshapes. This is shown in figure 4.9(a) where the n = 13 lineshape is measured

when the switching occurs at approximately ∆t = 12 ns, where ∆t is the time when

the high voltage switch is triggered. It can be seen that the lineshape at this switch-

ing time is equivalent to having a DC field of 400 V/cm. This allows us to determine

the exact overlap of the positronium cloud laser excitation with the switching time,

and as it can be seen from figure 4.9(b), if the switching takes place after ∆t ∼ 32 ns,

it no longer causes Stark broadening, meaning that is the appropriate time to begin

switching the voltages without affecting the laser excitation.

If there is a permanent voltage applied to the target and grid electrodes, even

if the field between them is ∼ 0 V/cm, after the Ps atoms exit the excitation region,

they will experience a large electric field due to the voltage on the grid and the near-

est ground plane (the chamber walls). This is enough to field-ionize most Rydberg

states above n ' 18. This can be avoided by switching off the voltage on the grid

(and the target simultaneously) as explained above and shown in figure 4.9. If the

voltage applied to the grid is sufficiently low by the time that the atoms leave the

region, they will be able to continue traveling until they annihilate due to hitting the

chamber walls or radiatively decaying into the ground state.

This can be seen in figure 4.10 where n = 18 and 19 were excited in approx-

imately zero electric field, by biasing both the grid and the target to 4 kV, and the
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Figure 4.9: (a) n = 13 lineshape comparison for a static field value of 400 V/cm (red cir-
cles) and an electric field caused by switching the excitation region grid and
target at the same time, thus inadvertently creating a field due to the differ-
ent capacitance of the grid and target (blue squares), the switching time with
respect to laser excitation is ∼ 12 ns. (b) Broadening of the line caused by
switching at different times, it can be seen that after ∆t ∼ 32 ns the excitation
field is no longer affected, since the voltage change is happening after the laser
pulses have left the excitation region.
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annihilation radiation was detected by “Detector A” [see figure 4.1(a)]. In the case

where the bias is not turned off (“Switch Off”), there is a large excess in annihila-

tion gamma-ray signal at t ∼ 100 ns, which corresponds to Rydberg Ps atoms being

field ionized straight after exiting the excitation region, n = 18 has a small amount

of excess annihilation at later times (∼ 600 ns) which is due to a small amount of

atoms exiting the grid at the center-most point, where the diverging fields to the

chamber walls are weakest, and thus n = 18 does not get ionized. However, n = 19

is fully ionized and would be the limiting n state that we could transmit if we did not

have the capability of switching the grid/target voltages off. It can be seen from the

“Switch On” waveforms in figure 4.10 that the annihilation due to the grid voltage
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Figure 4.10: SSPALS background-subtracted spectra taken by detector A [shown in fig-
ure 4.1(a)] for n = 18 and n = 19. The electric field in the excitation region is
∼ 0 V/cm, due to having biased the target and the grid at the same large volt-
age (∼4kV/cm). The large bias on the grid causes a field after the excitation
region that is able to ionize all n = 19 atoms and most n = 18, thus the excess
signal at ∼ 100 ns. When the bias on both electrodes is switched off before
the atoms leave, both n = 18 and n = 19 can survive until hitting the chamber
walls, thus causing the excess at ∼ 600 ns.
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can be completely suppressed when the voltage is switched off before the atoms

exit the interaction region, since they are allowed to diverge and travel further, they

collide with the chamber walls and emit gamma rays that are detected at t ∼ 600 ns.

Figure 4.11 shows the single-event annihilation gamma rays detected by “De-

tector B” simultaneously to that shown in figure 4.10. In this case, it can be seen

that even though a large portion of n = 18 atoms can be prevented from annihilating

(as shown in figure 4.10), this does not significantly affect the count rate on Detec-

tor B, this is due to the fact that Detector B is only sensitive to atoms that are not

very divergent, since they would collide with the chamber walls before reaching the
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Figure 4.11: Singe-event counting data corresponding to the measurements in figure 4.10
as recorded by the more distant detector B [shown in figure 4.1(a)]. It can
be seen that switching off the field outside the excitation region does indeed
allow n = 19 to pass through the grid without being ionized. However, the
count rate for n = 18 remains the same due to the fact that detector B can
only detect atoms that have small perpendicular velocities, such that they do
not collide with the walls before reaching the detector, these atoms will also
experience smaller fields due to the divergent nature of the electric field from
the grid to the chamber walls, and therefore do not get ionized even in the DC
field case.
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detector. For n = 18 these are also the atoms that are not ionized by the DC electric

fields, due to being emitted from the center of the grid, the count rate for n = 18 is

unchanged. However, as expected for n = 19, switching off the grid/target voltage

allows these atoms to exit the excitation region and reach detector B.

Calculated Stark energies of the n = 2 eigenstates are shown in figure 4.12 (a),

with the 2 3S′1 level indicated by the bold line. In order to produce pure 2 3S1 atoms

it is necessary to perform the excitation in an electric field that provides sufficient

coupling to the 2 3S′1 state (via its P component), and then to lower the field on

a time-scale commensurate with the lifetime of the 2 3S′1 states. The fraction of

P character, and hence the 2 3S′1 lifetime, depends on the electric field strength,

as shown in figure 4.12 (b) and figure 4.12 (c). The energies and lifetimes in the

presence of electric and magnetic fields were determined from the eigenvalues and

eigenvectors of the complete n = 2 Hamiltonian matrix using the procedures de-

scribed in section 3.

Since the annihilation rate of Ps Stark-states with n = 8 is negligible, but their

fluorescence lifetime is≈ 1 µs [Deller et al. 2016b]. This is sufficiently close to the

1.1 µs annihilation lifetime of 2 3S1 atoms that measurements employing n = 8 Ry-

dberg atoms can provide a signal that has characteristics similar to those expected

for the 2 3S1 atoms, but with a much higher production efficiency. Such correspond-

ing lifetime spectra recorded with the UV and IR lasers tuned to excite n = 8 states

are shown in figure 4.13 (a).

The time-dependence of the annihilation radiation signal shown in fig-

ure 4.13 (b) is consistent with the physical geometry of the electrode structure

and target chamber walls, and the mean speed of Ps atoms emitted from the silica

target (≈ 107 cm s−1). The underlying Ps velocity and angular distributions will be

very similar for both n = 2 and n = 8 atoms because Doppler velocity selection by

the excitation lasers is dominated by the UV laser bandwidth. Therefore the data in

figure 4.13 are expected to give a good indication of the qualitative form of a 2 3S1

signal, as long as additional annihilation channels are not present.

The goal of the measurement was to demonstrate that pure 2 3S1 Ps atoms can
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Figure 4.12: Calculated energy shift (a), fraction of 2 3S1 and 2 3PJ character (b) and mean
annihilation lifetimes (c) of the 2 3S′1 eigenstate as a function of the electric
field, with a constant parallel magnetic field of 130 G. Also shown in (a) are
the Stark shifts of other n = 2 levels. The dashed vertical lines indicate the
excitation fields used used in the experiments. From [Alonso et al. 2017b].
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be produced from 2 3S′1 atoms under typical experimental conditions, and to evalu-

ate the efficacy of the process. We do in fact observe background-subtracted spectra

characteristic of long-lived atoms when measurements are performed in a configu-

ration expected to result in the production of 2 3S1 states. The data in figure 4.14

(a) were recorded with an electric field of 2.23 kV cm−1. When the electric field is

switched off after excitation, an excess in annihilation signal peaking at ≈ 500 ns

is observed. Using a static field that is always present, no excess signal is observed.

The same measurement was performed in an electric field of 1.11 kV cm−1 [Fig-

ure 4.14 (b)] and an excess signal was observed. In this case, however, because
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Figure 4.13: Lifetime spectra measured using LYSO A with and without laser light present
(a). For these measurements the lasers were tuned to drive transitions to the
n = 8 state. The difference between the laser on and off curves of (a) are
shown in (b). The vertical lines at 100 and 500 ns indicate the approximate
times of Ps annihilations occurring following collisions with the grid electrode
and the chamber walls, respectively. The data are averages of 29000 shots
each, and were acquired in 17 hours in a nominally zero electric field. From
[Alonso et al. 2017b].
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of the low excitation field there is also a magnetic quenching signal present. This

signal is visible as an increase in annihilation events at early times and is relatively

strong, making the 2 3S1 signal appear less prominent. However, as can be seen

more clearly in the inset to figure 4.14 (b), the magnitude of the delayed signal

is comparable to that observed for higher fields. Similar measurements were also

performed for fields of 1.51 and 1.94 kV cm−1 (see figure 4.15) as highlighted in

figure 4.12.

The presence of long-lived Ps atoms can also be detected via single-event

counting using detector B (see figure 4.1). This detector is further away from the
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Figure 4.14: Difference curves recorded using LYSO A for excitation fields Eex of (a) 2.23
kV/cm and (b) 1.11 kV/cm. Data are shown for for fields that are switched
off (E = E(t)) and that are held at the excitation field (E = Eex). The inset in
(b) shows the delayed signal attributed to 23S1 atoms on an expanded scale.
Each curve is the average of approximately 13000 shots, and was acquired in
3.7 hours. From [Alonso et al. 2017b].
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Ps target, and is therefore more sensitive to delayed annihilation events. A single-

event counting procedure was used to produce time-of-flight (TOF) spectra, as de-

scribed in section 2.4. TOF data are shown in figure 4.16; these were recorded at

the same time as the data shown in figure 4.13 and figure 4.14. The TOF spectra

have been background subtracted, where the background corresponds to the case

where no laser light is present. Additionally, figure 4.17 shows TOF data for 1.51

and 1.94 kV cm−1.

As in the single-shot lifetime data, the production of n = 8 atoms can provide

a proxy signal that will have similar qualitative properties to that expected for 2 3S1
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Figure 4.15: Difference curves recorded using LYSO A for excitation fields Eex of (a) 1.94
kV/cm and (b) 1.51 kV/cm. Data are shown for for fields that are switched
off (E = E(t)) and that are held at the excitation field (E = Eex). The inset in
(b) shows the delayed signal attributed to 23S1 atoms on an expanded scale.
Each curve is the average of approximately 13000 shots, and was acquired in
3.7 hours.
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Figure 4.16: TOF spectra recorded by LYSO B with lasers tuned to excite n = 8 Ryd-
berg states (a) or n = 2 states (b) and (c). The spectra are background sub-
tracted as described in the text. Data were recorded in different electric fields,
as indicated in each panel, and for the n = 2 data for cases with the fields
switched off (E = E(t), squares) or for static fields (E = Eex, circles). From
[Alonso et al. 2017b].
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Figure 4.17: TOF spectra recorded by LYSO B with lasers tuned to excite n = 2 states. The
spectra are background subtracted as described in the text. Data were recorded
in different electric fields, as indicated in each panel, and for the n = 2 data
for cases with the fields switched off (E = E(t), squares) or for static fields
(E = Eex, circles).

atoms. Figure 4.16 (a) shows TOF data recorded with the UV and IR lasers tuned to

excite n = 8 atoms. For these data the background subtraction procedure results in a

negative peak at early times in the distribution because the transfer of ground-state

atoms to Rydberg levels is so efficient that it significantly depletes the background

population. By extrapolating over this negative region, however, one can infer that

the distribution exhibits a peak in the region of ∼1µs.

TOF spectra recorded under conditions where 2 3S1 production is expected are

shown in figure 4.16 and 4.17 (cf figure 4.14 and 4.15). As observed in the lifetime
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spectra, a delayed signal is present when the electric field is switched off, but not

when the field is maintained after laser excitation has occurred. Thus, these data

confirm the observation that 2 3S1 atoms have been produced.

For a given detector configuration, and using fixed integration regions, one can

compare different Sγ measurements to infer a relative yield of long-lived states. The

positive value of Sγ shown in figure 4.18 for low static electric fields arises through

magnetic quenching (covered in section 4.1), whereas the negative values are due

to long lived 2 3S1 atoms.

The data shown in figure 4.13 correspond to Sγ =−60%, using time windows

of A = -5, B = 400 and C = 1200 ns (see equation 2.2 and equation 2.3). The 2 3S1

production as measured via Sγ does not appear to depend strongly on the electric

field, as shown in figure 4.8 (a). The average value obtained Sγ = −2.2± 0.4%

indicates that the production efficiency of 2 3S1 atoms compared to Rydberg atoms

was about 4%. If all of the accessible n = 2 states are produced with equal proba-

bility then, considering the allowed transitions and the laser polarization used (ver-

tical) [Alonso et al. 2016a], the fraction of those in 2 3S′1 states would be 25% (i.e.,
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Figure 4.18: Sγ values obtained from lifetime spectra of figure 4.14 with and without
switching off the electric field. From [Alonso et al. 2017b].
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εQ = 0.25). If we assume that almost all n = 2 states are transferred to Rydberg

levels [Cassidy et al. 2012a] then we would expect to measure Sγ ≈ −15 %. The

observed Sγ =−2.2% therefore suggests that an additional loss mechanism may be

present.

This additional loss mechanism was investigated in [Alonso et al. 2017b] us-

ing simulations. By comparing the measurements with a Monte-Carlo simulation

that included the measured electric field switching times as well as the excitation

efficiencies and the corresponding 2 3S1 and 2 3P characters, it was determined that

the relatively long switching time of the electric fields is responsible for over 90%

of these losses, which are caused mostly by fluorescent decay to the 1 3S1 level. It

was determined that if the switching time could be reduced to ∼ 2 ns these losses

would be recovered thus producing the expected Sγ values of ∼−15%.

We estimate that in our experiments εex ≈ 0.25 and εPs ≈ 0.3. For εQ ≈ 0.25

(i.e., the ideal case without switching losses) the maximum yield per positron is

then ε2S ≈ 1.9%.



Chapter 5

Selective production of Rydberg

Stark states of positronium

The experiments and results discussed in this chapter have been previously pub-

lished in several articles, and as such, much of the content and figures used here

were From these publications. Contents from this chapter describing our ability to

selectively produce specific k states of positronium and our measurements of fluo-

rescence Rydberg lifetimes have been published in the following articles:

• T. E. Wall, A. M. Alonso, B. S. Cooper, A. Deller, S. D. Hogan, and D. B. Cas-

sidy. Selective Production of Rydberg-Stark States of Positronium. Phys. Rev.

Lett., 114, 173001 (2015). doi: 10.1103/PhysRevLett.114.173001.

• A. Deller, A. M. Alonso, B. S. Cooper, S. D. Hogan, and D. B. Cassidy

Measurement of Rydberg positronium fluorescence lifetimes. Phys. Rev. A,

93, 062513 (2016). doi: 10.1103/PhysRevA.93.062513.

• A. M. Alonso, B. S. Cooper, A. Deller and D. B. Cassidy. Single-shot positron

annihilation lifetime spectroscopy with LYSO scintillators. NIMA, 828, 163

(2016). doi: 10.1016/j.nima.2016.05.049.

https://doi.org/10.1103/PhysRevLett.114.173001
https://doi.org/10.1103/PhysRevA.93.062513
https://dx.doi.org/10.1016/j.nima.2016.05.049
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5.1 Rydberg positronium production

In order to excite ground state Ps to Rydberg levels we use a two-photon (1 3S→
2 3P→ n 3S/3D) excitation scheme through n = 2 as described in section 2. The

main motivation for exciting Ps to Rydberg states is to increase the lifetime of

the atoms, and to take advantage of their increased dipole moment to manipu-

late their motion. One can use inhomogeneous electric fields to control Ryd-

berg Ps [Deller et al. 2016a, Alonso et al. 2017a] atoms in much the same way as

been demonstrated for hydrogen [Vliegen et al. 2007] and other Rydberg atoms and

molecules [Hogan & Merkt 2008].

The ability to selectively populate individual Rydberg-Stark states is advanta-

geous to schemes designed to control Ps atoms via their electric dipole moments.

Here I describe how our first Rydberg Ps excitation was performed, and the meth-

ods used immediately after to selectively produce individual k states in specific m

manifolds by changing the laser polarization of the excitation radiation.

The production of Ps Rydberg states ranging from n = 9 up to the ionization

limit was verified in measurements conducted in (nominally) zero electric field,

as shown in figure 5.1. The states were resolved up to n ∼ 30 [figure 5.1 (c)].

For these measurements the background signal was obtained with the UV laser

tuned to the 1 3S→ 2 3P resonance, and the IR laser averaged over 755-758.5 nm

where it is not resonant with any n state and is therefore essentially as if it was

“off”, so that Sγ is sensitive only to the 2 3P→ n 3S/3D transitions. The decrease

in the background level for λ > 760 nm [figure 5.1 (a)] is due to the production

of Rydberg states by broadband light emitted via amplified spontaneous emission

(e.g., [Demtröder 2003]), as these wavelengths are approaching the upper limit of

the gain curve of the Styryl-8 dye used in the IR laser (see section 2.1.3). Both lasers

were linearly polarized in the vertical direction for this particular measurement.

A notable feature of these data is that the negative Sγ values are inverted for

n > 17, as seen in figure 5.1 (c), becoming positive thereafter. The timing windows

used to analyze these data (A = −2, B = 226, C = 597) are such that this inver-

sion occurs when Ps atoms are no longer able to pass through the grid due to field
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Figure 5.1: (a) Measured spectrum of Rydberg states excited in zero applied electric field.
The data for n = 17 is expanded in (b) and n≥ 19 is shown in (c). The reversal
of the sign of S is due to Ps atoms that cannot pass through the grid. The
dashed lines indicate the ionization limit (729 nm). The timing windows used
to analyze these data were A = -2 ns, B = 226 ns and C = 597 ns). The error bars,
not shown in (a) or (c) for clarity, are of the same size as those shown in (b).
Values of n are shown in the top axes of (a) and (c). From [Wall et al. 2015].

ionization, and Ps annihilation therefore occurs at earlier times. It is important to

note that the magnitude of the positive and negative peaks cannot be directly com-

pared as the detection efficiency is not the same in both cases. No electric field

was applied in the excitation region when these data were recorded, however, the

∼ 130 G magnetic field will give rise to motional Stark fields that may be as high as

10 V/cm. There may also be fields present that are generated by secondary electrons

produced following positron irradiation of the target [Overton & Coleman 1997] or

photoelectrons made by the UV laser. The combined effect of these fields polar-

izes the Rydberg states in the excitation region, leading to a weak Stark splitting
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Figure 5.2: (a) SSPALS signal as the wavelength of the IR laser is tuned over the range
of n = 10 – ∞. The expected position of each n-state is indicated along the
top-axis. (b) Event rate registered by a detector positioned 1.2 m from the Ps-
converter over the time window of 0.8 - 18 µs after positron implantation. Each
data point represents 300 trap cycles. From [Deller et al. 2016b].

[Gallagher 1994].

Figure 5.2(a) shows similar data to Figure 5.1(a), however, in this case the

implantation energy of the positrons was around 2kV instead of 4kV, a “ring” elec-

trode was used instead of a mesh for field control, the integration windows (see sec-

tion 2.3) used were optimized for later annihilation times, and the Rydberg atoms

were allowed to travel a distance of ∼1.2 m before being detected using the single-

event–counting techniques described in section 2.4, yielding the results shown in

figure 5.2(b), which shown that, as the lifetime of the atoms increases with n, they

can be detected more efficiently since less of them decay before detection, but after

n = 22 approximately, the atoms become field ionized by the field generated due

to the ring electrode. In this study, it was also possible to measure the lifetime of
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specific n states [Deller et al. 2016b] which agreed with calculations performed ac-

cording to the m manifold being populated, however, these calculations were not

part of the projects outlined on this thesis and so they shall not be discussed further

(see [Deller et al. 2016b] for more information).

5.2 Rydberg Stark filter

As the Rydberg Ps atoms pass through the grid (see figure 2.11) they experience a

large inhomogeneous electric field on a distance scale commensurate with the mesh

spacing (∼ 100 µm). After being transmitted any remaining Rydberg Ps atoms

experience an approximately homogeneous electric field defined by the potential

applied to the grid plane. The data presented in figure 5.3 show spectra covering

the transition to the n = 18 state, and demonstrate that transmission of Rydberg Ps

atoms through the grid depends on their rate of electric field ionization. These data

were recorded with a constant electric field of 63 V/cm applied to the excitation

region and fields ranging from ∼1397 to 1985 V/cm in the region after the grid.

For weak fields, the short wavelength components of the n= 18 spectral feature

are successfully transmitted through the grid (negative Sγ parameter) while only the

outermost components at the long wavelength edge are not transmitted. This obser-

vation indicates that Rydberg-Stark states are sufficiently polarized by the electric

field to result in a partial splitting of states with positive and negative Stark shifts,

and that these states subsequently evolve adiabatically while passing from the exci-

tation region through the grid.

Since the outermost Stark states with negative Stark shifts ionize in weaker

electric fields than states with positive Stark shifts (see section 3.2), the cut-off in

transmission through the grating occurs first for the outermost components at the

long wavelength edge of the spectrum. For each value of n, the ionization field for

the outermost Stark state with a negative Stark shift in Ps is approximately equal to

the classical ionization field [Gallagher 1994] (cf equation 3.14)

Fion = 2RPshc/eaPs9n4, (5.1)
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Figure 5.3: n = 18 peak measured with a 63 V/cm electric field in the excitation region and
varying fields outside the grid as indicated. The vertical line shows the position
of the n = 18 peak. Positive Sγ values indicate atoms in Stark states that cannot
pass through the grid. From [Wall et al. 2015].

where RPs = 0.5R∞ is the Rydberg constant for Ps, and aPs = 2a0 = 1.058×10−10 m

is the Ps Bohr radius. This suggests an ionization field of 1360 V/cm for n = 18,

close to that observed for the transmission of the corresponding states in figure 5.3.

On the other hand, the outermost Stark states with positive Stark shifts ionize at

approximately 2Fion, indicating that a field of 2721 V/cm is required to completely

inhibit transmission through the grid for all states with n = 18. The observation that

a field slightly below this (1985 V/cm) is sufficient to inhibit transmission of the

outermost states with positive Stark shifts can be attributed to effects of n-mixing

with states of higher principal quantum number in the combined magnetic and in-

homogeneous electric fields in the vicinity of the grid. This possibility is further

emphasized by figure 5.4 which shows that even at fields as low as ∼ 250V/cm,

there is overlap with Stark states from neighboring n states (n = 19 in this case),

thus, if there is a magnetic field present too (not included in the calculations shown

in figure 5.4), the different Stark states would become mixed, and in the case of
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Figure 5.4: Stark shifted energy spectra calculated (up to fourth order, as described in equa-
tion 3.10) for n = 17,18 and 19 and |m|= 1. The thick red lines show the range
of fields for which each state has an ionization decay rate between 108 s−1 and
1010 s−1.

positive Stark shifts for n = 18, they would become mixed with n = 19 (and others

n states not shown for clarity), which have lower ionization fields, thus lowering the

effective field ionization limit for these states. In this configuration the grid acts as a

filter for the unresolved Rydberg-Stark states. This Stark-state filter permits spectral

broadening arising from electric fields to be distinguished from Doppler broaden-

ing, and is therefore of particular value in obtaining information on the magnitude

of the electric field in the photoexcitation region.

5.3 Selecting Stark states and varying laser polariza-

tion
To demonstrate the possibility of resolving individual Rydberg-Stark states, the

lineshape for n = 11 was recorded at increasing electric fields until the Stark states
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Figure 5.5: Stark broadening of n = 11 Ps states in various electric fields, as indicated in
the panels. The dashed line represents the expected IR transition wavelength
at zero field. For the highest field (2 kV/cm), the encroachment of neighboring
n= 12 states can be seen at the shorter wavelengths. The individual Stark states
can be partially resolved at the highest field, but are limited by the 85 GHz
bandwidth of the 1S-2P excitation laser and Doppler broadening effects. From
[Cooper et al. 2015].
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could be resolved, this is shown in figure 5.5. Additionally, the spectra at the largest

fields were recorded for multiple laser polarizations, the spectra presented in fig-

ure 5.6, the Stark states are separated in frequency by ∼ 165 GHz. However, this

field also gives rise to mixing between the intermediate 2S and 2P triplet states

(as described in chapter 4), and unresolved Stark splittings at n = 2 approaching

30 GHz. The complexity of the Stark structure arising from the spin-orbit coupling

in this intermediate state means that the Stark manifolds in the Rydberg states can

not be fully described by hydrogenic expressions for individual values of |m|, even

at the 90 GHz resolution of the experiment. These effects are accounted for by cal-

culating the eigenvalues and eigenvectors of the Hamiltonian matrix including the

electric field for the triplet states of Ps with n = 2 in an |nS`JMJ〉 basis [Curry 1973]

to determine the relative populations of each Stark sublevel. The results of this cal-

culation were then used to determine the intensities of the subsequent transitions

to the 11S and 11D Rydberg-Stark states following a transformation to the |n`m`〉
basis for the description of these states. The results of this calculation, including

a convolution with a 90 GHz FWHM Gaussian spectral function, are overlaid with

the experimental data in figure 5.6.

The calculation does not take into account the polarization of the initial

positron beam or optical pumping through 1 3S↔ 2 3P transitions, which may play

an important role. The asymmetric structures observed in the spectra of figure 5.6

are primarily related to the details of the Stark structure of the n= 2 manifold. How-

ever, even though the calculations shown in figure 5.6 are similar to those described

in section 3.1, it should be noted that they did not constitute a part of the work

outlined in this thesis and were performed in their entirety by S. D. Hogan.

Figure 5.7 shows an n = 12 lineshape performed in a similar way to the data

shown in figure 5.1. It can be seen that the data recorded with a LYSO detector has

better signal-to-noise ratio. This is relevant for other long-lived Ps measurements

that were made plausible thanks to LYSO detectors. Additionally, figure 5.8 shows

data taken with the same polarization as in figure 5.6(c) for n = 11, and it can also

be seen that LYSO detectors are beneficial for these kind of measurements.
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Figure 5.6: Measured (points) and calculated (lines) Rydberg Stark spectra of n = 11 Ps
atoms in an electric field of 1.9kV/cm. The excitation was performed with
different combinations of UV and IR laser polarizations P with respect to the
electric field direction F , as indicated. In panel (a) the intrusion of neighboring
n = 12 states (not included in the calculation) is seen below 752 nm. From
[Wall et al. 2015].



5.3. Selecting Stark states and varying laser polarization 99

Efficient production of Ps Rydberg states has been observed before

[Cassidy et al. 2012a], this likely involves a mechanism wherein Ps Rydberg atoms

are excited into states that cannot subsequently be pumped back to the n = 2 level,

leading to an enhanced excitation efficiency, and even saturation, of Rydberg state

production. This could occur, for example, via m changing collisions with sec-

ondary or photo-electrons. There are no data in the literature concerning electron

interactions with Ps in Rydberg states, but it is well known that the cross sections

for state-changing collisions between Rydberg atoms and charged particles can be

very large [Gallagher 1994]. Whether such collisions take place or not could be

investigated by directly measuring Ps lifetimes in beams or traps, as they would be
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Figure 5.7: Lineshape for n = 12 Ps excitation, recorded with LYSO and PWO detec-
tors. The acquisition time was 400 seconds per point, or approximately 7
hours for the entire spectra. These data have been normalized to the maxi-
mum peak amplitude. The vertical line represents the wavelength of the transi-
tion from the n = 2 gross energy level as described by the Bohr model. From
[Alonso et al. 2016a].
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time was 200 seconds per point, or approximately 9 hours for the entire spectra.
These data have been normalized to the maximum peak amplitude. The vertical
line represents the wavelength of the transition from the n = 2 gross energy
level as described by the Bohr model. From [Alonso et al. 2016a].

increased significantly if higher angular momentum states are produced.

Future refinements of the positron beam may also make it possible to use a

Doppler free two-photon excitation scheme [Wall et al. 2014], which would provide

improved resolution, and hence state selectivity, at higher values of n.



Chapter 6

Spatial manipulation of Rydberg

positronium

The experiments and results discussed in this chapter have been previously pub-

lished in several articles, and as such, much of the content and figures used here

were taken from these publications. Contents from this chapter describing our abil-

ity to manipulate the motion of Rydberg Ps with different designs of quadrupole

guides have been published in the following articles:

• A. Deller, A. M. Alonso, B. S. Cooper, S. D. Hogan, and D. B. Cassidy.

Electrostatically Guided Rydberg Positronium. Phys. Rev. Lett., 117, 073202

(2016). doi: 10.1103/PhysRevLett.117.073202.

• A. M. Alonso, B. S. Cooper, A. Deller, L. Gurung, S. D. Hogan, and

D. B. Cassidy. Velocity selection of Rydberg positronium using a curved

electrostatic guide. Phys. Rev. A, 95, 053409 (2017). doi: 10.1103/Phys-

RevA.95.053409.

http://link.aps.org/doi/10.1103/PhysRevLett.117.073202
https://link.aps.org/doi/10.1103/PhysRevA.95.053409
https://link.aps.org/doi/10.1103/PhysRevA.95.053409
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6.1 Generating a quadrupole field

The increased lifetimes and enhanced electric dipole moment of atoms in Ryd-

berg states have been used in the past to manipulate the motion of several species

using inhomogeneous electric fields [Hogan & Merkt 2008, Townsend et al. 2001,

Wing 1980, Breeden & Metcalf 1981] over long time scales. Variations of such

techniques have been used for decades [Bennewitz et al. 1955] to manipulate

ground-state polar molecules [van de Meerakker et al. 2012, Fulton et al. 2006] as

well as atoms and molecules in Rydberg states [Hogan 2016], and other methods

such as traveling optical latices to manipulate the motion of ground state atoms

[Barker & Shneider 2001, Barker & Charlton 2012]. Most experiments that have

previously demonstrated manipulation of atoms and molecules due to their electric

dipole moment made use of supersonic jet expansions, which provides a very ef-

ficient form of cooling during the expansion phase due to collisions between the

atoms/molecules. This is not the case for our Ps experiments, as the typical den-

sities in our experiments are not large enough for significant Ps-Ps interactions

[Cassidy & Mills 2008]. Manipulation of Rydberg atoms has been achieved us-

ing relatively large electrode structures [Seiler et al. 2011b] and more refined chip-

based techniques [Hogan et al. 2012].

In this chapter we outline our results for the implementation of some of

these techniques to Rydberg Ps, specifically, using quadrupole electric fields gen-

erated by four electrode structures to radially confine Ps atoms and guide them

[Deller et al. 2016a, Alonso et al. 2017a].

The Ps atoms were created in an electric field to facilitate selective excita-

tion of specific parts of the Stark manifold (see chapter 5). After entering the

guide, atoms in states with positive Stark shifts [i.e., low-field-seeking (lfs) Stark

states] are deflected away from the electrodes by the inhomogeneous electric fields

[Townsend et al. 2001], and are thus guided along the length of the device. Atoms

in states with negative Stark shifts [i.e., high-field-seeking (hfs) Stark states] are

deflected away from the axis of the guide and are lost.

The Ps excitation region and the quadrupole guide structure and electric fields
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Figure 6.1: (a) Schematic layout of the experiment, indicating the Ps excitation region,
the position of the quadrupole guide, and the LYSO gamma-ray detectors A,
B, and C. (b) Expanded view of the excitation region, and (c) a contour plot
of the electric field strength inside the quadrupole with 1 kV applied. From
[Deller et al. 2016a].

are shown schematically in figure 6.1. Because Ps is produced in a reflection geom-

etry, the guide potentials are switched on 150 ns after the positron beam has passed

through using the methods described in section 2.5. Ps atoms are excited by the

UV and IR lasers and travel towards the guide, reaching the entrance in ∼200 ns.

As indicated in figure 6.1(b), the path from the silica target to the guide is partially

collimated by a 5.8 mm diameter hole in a ring electrode, located 6.0 mm from

the target, this is slightly different from most of our other experiments which had

a “grid” electrode here instead (see section 2.7). Also shown in figure 6.1 are the

positions of three LYSO detectors. The first detector (A) covers the target area and

is used to monitor Ps formation and excitation, while Ps atoms that leave the exci-
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tation region are detected by two more detectors (B and C) located approximately

0.4 m away.

6.2 Guiding positronium in a straight guide
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Figure 6.2: (a) Spectrum of the n= 2→ 10 transitions measured using detector A. The grey
vertical bars represent the relative spectral intensity for individual k states, la-
beled by the horizontal scale. The black solid line is a convolution of these with
the∼130 GHz experimental spectral resolution. (b) The background subtracted
count rate obtained from detectors B and C, measured with the indicated poten-
tials applied to the guide. The dashed vertical line in both panels represents the
expected centroid wavelength for n = 10. From [Deller et al. 2016a].

In order to separate the Rydberg-Stark states, an electric field of 670 V cm−1
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was applied in the excitation region , and the resulting Stark-broadened spectrum of

transitions from n = 2 to n = 10 is shown in figure 6.2(a). These data were obtained

via SSPALS methods using detector A. There is a slight difference in the detection

efficiency of lfs and hfs states because they are deflected by the inhomogeneous

electric fields between the ring and guide electrodes. As a result, the measured

spectrum is not perfectly symmetric. The applied field is not sufficient to permit the

spectral resolution of individual Stark states (compared to figure 5.6, for example),

but it is sufficient to allow for the optical selection of predominantly lfs or hfs states.

The IR and UV laser polarizations employed here were horizontal and vertical

respectively, corresponding to data displayed in figure 5.6(c). The calculated rel-

ative spectral intensities [Hogan 2013] of the transitions to the nD components of

the m = 1 Stark states are indicated by the vertical bars in figure 6.2(a). The solid

black line is a convolution of the calculated intensity distribution with a 130 GHz

Gaussian function, representing the experimental spectral resolution due to the laser

bandwidth and Doppler broadening.

Enhanced Ps transport along the guide is indicated by an increased count rate

in detectors B and C. Single event counting is used to detect atoms that travel away

from this region (see section 2.4). For this particular set of data, detectors B and

C were used, it is estimated that the detector efficiency including the solid angle

coverage is around 5%. Figure 6.2(b) shows the background subtracted total count

rate from detectors B and C as a function of the IR laser wavelength, for a range

of voltages applied to the guide. The background was measured with the IR laser

off resonance. The data obtained with 0 V applied to the guide were recorded at

the same time as the spectrum shown in figure 6.2(a). In this case we detect any

Ps Stark states that are emitted towards the guide within a narrow cone with a half

angle of approximately 1◦.

When the guide fields are applied the signal detected by B and C depends

strongly on the IR laser wavelength. No hfs states are detected, demonstrating that

even for states with the smallest electric dipole moments (i.e., k = −2 states with

µ = 150 D) and for the lowest applied fields, the hfs states cannot traverse the guide.
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Figure 6.3: Background subtracted TOF data recorded by detectors B and C with 1 kV
applied to the guide electrodes, for IR laser wavelengths corresponding to (a)
outer lfs (k∼+6) and (b) outer hfs (k∼−6) states, as indicated. The data set is
truncated for times less than ∼0.5µs because of detector saturation following
implantation of the positron pulse. From [Deller et al. 2016a].

The maximum applied potential results in a maximum electric field of 4.2 kV cm−1,

which is well below the lowest field required to ionize n = 10 (∼14 kV cm−1, see

section 3.2)

For a low guide field only those states with the highest dipole moment (i.e.,

k =+8 states with µ = 610 D) are observed above the guide off background signal.

Nevertheless, this field is sufficient to suppress transport of all hfs states. When the

field is increased, more of the lfs Stark states are transported, which may be partially

due to a focusing effect in the space between the ring and guide electrodes and due

Ps atoms traveling at larger speeds being able to be guided. The TOF distributions of

the guided atoms have been directly measured for two different IR wavelengths, for

which either lfs (k∼+6) or hfs (k∼−6) Stark states were predominantly prepared.

These data are shown in figure 6.3. These TOF spectra are consistent with numerical
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trajectory simulations which will be discussed in the section 6.4.

6.3 Velocity selection of guided positronium

After achieving radial confinement of Rydberg positronium with a straight guide,

a curved version of the quadrupole was constructed and implemented to perform

velocity selection and separate the guided Rydberg Ps beam from the positron beam.

This will allow future scattering experiments to take place at the end of the guide.

This type of curved guiding structure has been widely used in experiments with

polar molecules [Rangwala et al. 2003, Motsch et al. 2009, van Buuren et al. 2009,

Bertsche & Osterwalder 2010, Sommer et al. 2010]. The setup used is depicted in

figure. 6.4, where it can be seen that the curved guide had a 45◦ bend and detectors

were placed near the production region (D1 & D2), near the bend (D3), and after

the exit of the guide (D4 & D5).

Rydberg Ps atoms were prepared both with and without a uniform electric

field present (by changing the voltage difference between the grid and the target,

see figure 2.11). The corresponding lineshapes, measured using D2, for the 2 3P→
14 3S/14 3D transitions are shown in figure 6.5(a). The Stark-broadened transition

allows us to tune the laser wavelength to preferentially excite lfs states as discussed

in section 5. This is not possible if the excitation is performed with zero applied

field because we have insufficient spectral resolution (owing primarily to the laser

bandwidth and Doppler broadening) to address only the part of the Stark manifold

containing the desired lfs states. These states still exist even when no field is applied

as a result of the magnetic field and stray electric fields in the excitation region.

Rydberg atoms that enter the quadrupole guide structure and are transported

to the end are detected by D4 and D5 where a single-event counting procedure

is performed (see section 2.4). The total event rate recorded during the lineshape

measurements is shown in figure 6.5(b). Here we see that when lfs states are pref-

erentially prepared, the event rate is much higher and occurs at a wavelength that

is down-shifted from the resonant wavelength. These data show conclusively that

it is more efficient to broaden the line and then tune the laser to the lfs side of the
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spectrum, which is to be expected since we will not then produce any hfs states,

which cannot be guided. This procedure will mostly result in the production of

Rydberg-Stark states with values of the parabolic quantum number k = +12 and

dipole moments of 1280 D (see section 3.2). The maximum electric field strength

encountered in the guide is ≈ 7 kVcm−1, which would result in field ionization

rates of the k = +12 Stark-states of ≈ 109 s−1 (see figure 3.6). However, simula-

tions indicate that the Ps atoms do not spend much time in these field extrema.

TOF spectra of guided atoms recorded near the bend (by D3, see figure 6.4),

and at the end of the guide (by D4 & D5) for different applied electric potentials

are shown in figure 6.6. These spectra have been background subtracted, where

the background corresponds to the case where no IR laser light is present. The

data show that increasing the quadrupole field strength increases the overall guiding
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Figure 6.4: (a) Schematic representation of the experimental apparatus containing the
curved guide. The positions of the five γ-ray detectors used in the experiment
are indicated (see text for details). D1 and D2 are used to monitor Ps atoms
in or near the excitation region via lifetime spectroscopy, whereas D3, D4, and
D5 are used to generate single-event TOF spectra. (b) Close up of the exci-
tation region indicating the Ps formation target and excitation region, and the
position of the quadrupole guide rods relative to the grid electrode, and (c) elec-
tric field map within the guide with 5.5 kV applied to one pair of rods. From
[Alonso et al. 2017a].
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efficiency by capturing more of the Ps atoms. The count rate measured by D3 has

a maximum value at intermediate guiding fields because D3 will predominantly

detect atoms that are guided in the straight section, but are not transported around

the bend.

We may evaluate the degree of velocity selection imposed by the curved guide

by considering velocity distributions measured with and without guiding, as shown

in figure 6.7. These distributions were derived from measured TOF distributions,

with the data rebinned into equal sized (10 kms−1) bins. The “no guide” data were
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Figure 6.5: (a) Lineshapes for the 2 3PJ → 14 3S/14 3D transitions measured by D2 with
and without a 333 V/cm linear electric field applied in the excitation region.
The asymmetric lineshape measured with the electric field applied is due to
deflection of atoms towards or away from D2. The data have been normalized
to peak amplitude. (b) Total count rates for guided atoms as a function of the IR
laser wavelength in the corresponding electric fields, measured by D4/5. The
dashed vertical line represents the expected zero-field resonant wavelength, and
the voltage applied to the guide was 5.5 kV. From [Alonso et al. 2017a].
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recorded using n = 20 Ps atoms, measured 1.2 m away from the Ps production

region (see section 5.1), and with a positron beam energy of 2 keV. In this configu-

ration only atoms emitted in a small (∼1◦) cone were detected, and therefore atoms

with the largest (smallest) longitudinal (radial) speeds were selected. A mean Ps

speed of 115 kms−1 was measured near the Ps source region, while ≈ 225 kms−1

was measured 1.2 m away, as shown in figure 6.7. This spectrum represents an

upper limit to the possible initial Ps distribution as accepted into the guiding struc-

tures since this represents the distribution without any velocity selection introduced

by the acceptance of the guide.

Ps atoms transported by the straight guide are radially trapped (see section 6.1);

this introduces some longitudinal velocity selection owing to the correlation be-

tween the longitudinal and transverse velocity components [Deller et al. 2015]. The

straight guide distribution shown in figure 6.7 was obtained using a relatively low

guiding field, which therefore selected slower atoms. This spectrum indicates a

mean speed of 137 kms−1 and represents a lower limit to the possible initial Ps
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Figure 6.6: (a) TOF data measured using D3, and D4/5 for guide voltages of 0.5, 3.5,
4.5 and 5.5 kV, as indicated in the legend. Additional spectra (not shown) were
recorded for guide voltages of 1.5, 2.5 and 5.0 kV and lfs Ps atoms with n = 14.
Each curve was acquired in 4 h. From [Alonso et al. 2017a].
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distribution at the guide entrance.

Thus, as a rough approximation, we can expect a representation of the initial

Ps velocity distribution entering the curved guide to fall somewhere between the

unguided and straight guide distributions shown in figure 6.7. The absolute number

of atoms detected in each case depends on several factors, such as guide efficiency,

beam collimation, Ps-guide alignment, and detector solid angle. These factors are

not necessarily the same for all measurements, and the unguided case is of course

intrinsically much less efficient. The distributions have been normalized to peak

amplitude to facilitate comparison of the mean speeds, but the transport and detec-

tion efficiencies will be different in each case.

6.4 Trajectory simulations
Simulations of the motion of Ps atoms in Rydberg-Stark states in the electrostatic

quadrupole field were carried out to help understand the experimental data, and
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Figure 6.7: Longitudinal velocity distributions as derived from TOF measurements ob-
tained with no guide (triangles, see section 5.1) , a straight guide (squares, see
section 6.1) and with the curved guide (circles). The electric potential applied
to the guide rods are indicated in the legend. The curved guide data is derived
from the data shown in figure 6.6. TOF spectra were re-binned into 10 kms−1

steps to generate the velocity distributions. From [Alonso et al. 2017a].
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also to examine the possibility of performing scattering measurements using guided

Rydberg Ps. The equations of motion of Ps atoms in a quadrupole electric field

were solved to find the Ps trajectories using the fourth-order Runge-Kutta algorithm

[DeVries 2010], with the acceleration of each atom given by

~a =
µelec.

2me
∇~F , (6.1)

since the force in a dipole can be expressed as ~f = ∇(µ ·~F) [Griffiths 2012]. Where

µ represents the dipole, ~f the classical force exerted on the dipole, and ~F is the

electric field vector. The electric field gradients were obtained using finite element

calculations of the electric field distribution within the guide as shown in figure 6.8.

The trajectory calculation was seeded using a Monte-Carlo simulation of the

initial Rydberg Ps velocity distribution. Ground-state Ps atoms were modeled as be-

ing emitted from the converter with a thermal speed distribution (T = 1200 K) and

cosine angular distribution. Ps produced from porous silica films is not expected to

exhibit a thermal distribution but previous measurements [Deller et al. 2015] have

shown that the actual Ps distributions can be approximated with reasonable accu-

racy in this way using an arbitrary temperature value. The spectral overlap was

determined by the laser bandwidth, ∆ν = 100 GHz, and the Doppler shift of each

atom according to its velocity in the direction parallel to the propagation of the laser,

vx.

The Ps atom trajectories were calculated taking into account the electric field

experienced by each atom and the corresponding ionization rate (see section 3.2) as

well as the Ps fluorescence lifetimes. The latter were obtained from the calculated

values described in [Deller et al. 2016b]. If an atom decayed, was field ionized, col-

lided with a chamber wall, the grid, the target, or the guide electrodes, the trajectory

was terminated. The Monte-Carlo simulations were run using 1000 particles and

the results are shown in figure 6.8 for different guiding fields.

For the initial velocity distributions and the maximum guide voltages used in

these experiments, the simulations indicate that n = 14 is the optimal guiding state

as shown in figure 6.9, based on the guide efficiency and loss mechanisms (decay
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and ionization). The data shown in figure 6.8 (d) show that at these fields Ps atoms

that are not guided will be ionized before leaving the guide structure. The simula-

tions indicate that higher n states can be guided in lower fields, although this is only

possible if the excitation region field is turned off before the Ps atoms exit through

the grid electrode (see section 4.2) to prevent field ionization.

Figure 6.10 shows a comparison of the measured event rate and calculated

guiding efficiency, as well as the measured and calculated mean Ps speeds. We

find a broad agreement over the range for which measurements were performed.

The TOF distributions were fitted to Gaussian functions in order to estimate the

mean Ps speeds, and we find reasonable agreement between the measurements and

Figure 6.8: Simulated trajectories for guide biases of 0.5 (a), 2.5 (b), 4.5 (c), and 5.5 kV
(d). The black lines represent atoms in the low-field-seeking state with k =
+12, whereas the lighter (red) lines represent atoms in the high-field-seeking
state with k = 12. Also shown in each panel is an inset of the electric field
strength for each configuration, and an outline of the chamber walls represent-
ing the ground plane of the electric field. From [Alonso et al. 2017a].
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simulations. These data indicate that by adjusting the guide field, the mean speed of

atoms can be selected over a small range (approximately 75-90 kms−1). However,

this variation is small compared to the width of the velocity distribution, and is

accompanied by a large reduction in the guiding efficiency.

The measured TOF distributions can be used to evaluate the efficacy with

which our arrangement could be used to observe the formation of positron-atom

bound states. To do this the attenuation of the measured Ps TOF distributions was

simulated by including an interaction cross section, and assuming an atom was re-

Figure 6.9: Simulated transport efficiency for a range of n from n= 10 to n= 24 for a range
of curved guide biases. The higher the guide bias, the deeper the radial potential
well for the Rydberg Ps atoms due to the dipole forces, and thus more of the
fast-moving atoms may be trapped. However, large electric fields due to large
biases may also lead to field ionization, which means that there is a limit to how
large a field can be applied to a certain n state. But the classical field ionization
for different n’s scales as n4 (see equation 5.1), and thus lower n’s are more
suitable to survive these large fields. All of this factors are taken into account
in the simulation, and it can be seen that the best guiding efficiency attainable
in this configuration is at the largest guiding bias that the high voltage switches
can apply (∼5.5 kV/cm), and when n = 14.
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moved from the system if a scattering event occurred. The cross sections used

were those calculated for positrons binding to Zn atoms [Swann et al. 2016], and

are shown in figure 6.11(a). Zn atoms were chosen because they have the largest

calculated cross sections out of all the species considered in [Swann et al. 2016].

The simulated attenuation of the Ps distribution is shown in figure 6.11(b) for dif-

ferent Zn pressures at a temperature of 485 K. The trajectories shown in figure 6.8(d)

were used as the basis for Ps-atom interactions in a 3.5 cm long scattering region

that encompassed the entire radial extent of the beam. The velocity of each parti-

cle was obtained from a weighed distribution based on the measured data shown in

figure 6.6, and the interaction rate per particle in the simulation (Γ) was given by

Γ = σ(v)ρdL/dt, (6.2)
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Figure 6.10: Measured count rate and simulated guiding efficiency (a) and mean Ps ve-
locities derived from the TOF data and simulations (b) for different voltages
applied to the quadrupole rods. From [Alonso et al. 2017a].
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Figure 6.11: (a) Calculated cross section σ for positron-atom bound state formation in col-
lisions of n = 14 Ps atoms with Zn atoms and (b) simulated data indicat-
ing how the observed velocity distribution would be attenuated by Ps charge
exchange reactions with Zn at the indicated pressures. The measured TOF
distribution has been re-binned into 5 kms−1 steps to generate the velocity
distribution. From [Alonso et al. 2017a].

where ρ is the target species number density, dL is the distance traveled in each

time step dt, and σ(v) is the relevant cross section as a function of speed, obtained

from [Swann et al. 2016], and shown in figure 6.11(a). For each particle whether

an event had occurred or not was determined by comparing the calculated proba-

bility with a randomly generated number between 0 and 1. The simulations were

run with 5865 particles for each pressure shown in figure 6.11. We note that the

cross sections used in the simulations were calculated for Ps Rydberg levels with

specific angular momentum ` values (in this case, D states), whereas experimen-

tally we expect to produce only Rydberg-Stark states (i.e., states that are strongly

`-mixed) [Deller et al. 2016b]. However, test calculations designed to estimate the

likely cross section ` dependence indicate that below energies of 1 eV it is relatively
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weak [Swann et al. 2016]. Nevertheless, this determination of possible positron-

atom bound state production rates should be considered only as an order of magni-

tude estimate.

Figure 6.11 shows the simulated attenuation of the Ps distribution for differ-

ent Zn gas pressures in the scattering region. These data indicate that a clearly

discernible signal could be achieved, but that it would require Zn pressures close

to 1 × 10−4 mbar, unless slower Ps atoms can be employed. Such pressures can

be achieved by heating Zn to temperatures & 500 K [Greenbank & Argent 1965].

Although there are some experimental challenges associated with producing hot

metal vapors it can be achieved by integrating a hot cell into our system (e.g.,

[Anderson et al. 2014]). If this can be successfully accomplished with Zn then our

simulations indicate that a measurement of positron-atom binding is in principle

feasible using this Rydberg Ps source.

From a practical point of view, this velocity selection method is convenient

in that it can remove the Ps beam from the trap axis, allowing for improved sep-

aration of the detection and production regions. A rotated Ps formation target can

also be used to achieve this goal (e.g., [Jones et al. 2014]), but at the cost of in-

creasing the effective positron beam spot size, and hence the spatial extent of the

Ps source. Alternatively one can bend the incident positron beam using magnetic

fields (e.g., setup used to acquired the data in figure 5.2), although this can make

the beam alignment more complicated. Moreover, both of these methods retain a

direct line of sight between the excitation and detection regions, which for some

experimental arrangements could be undesirable; for example, scattered laser light

may reach the interaction region and interact with sensitive micro-channel plate de-

tectors [Jones et al. 2016], or the Ps formation target may become contaminated by

scattering-target gases.



Chapter 7

Future prospects and conclusions

7.1 Trapping Rydberg positronium

There have been many previous studies that made use of the large static

dipole moments of Rydberg-Stark states to perform three dimensional trap-

ping of atoms [Vliegen et al. 2007, Hogan & Merkt 2008, Seiler et al. 2011b,

Seiler et al. 2012, Hogan et al. 2013, Lancuba & Hogan 2016] and molecules

[Hogan et al. 2009, Seiler et al. 2011a, Seiler et al. 2012]. This possibility has also

been investigated throughout the course of this project by performing trajectory

simulations similar to the ones described in section 6.4 and therefore we would like

to now apply these methods to decelerate and trap Ps.

A simple configuration of electrodes was found to be a potential candidate

for this future experiment, the result of these simulations at four different stages of

trapping are shown in figure 7.1. The black bars labeled A, B, C, and D are all square

40×40 mm electrodes, B and D both have transmissive meshes that allow Ps atoms

to travel through them, while C has a central 13 mm hole where the trapped atoms

oscillate around their equilibrium position. The voltage applied to all four electrodes

must be controlled independently during each time-step in the simulation.

In order to obtain these trajectories initially 5000 Ps atoms were generated us-

ing Monte-Carlo methods to determine their initial velocity spread using a Maxwell

Boltzmann distribution which was then truncated at low energies to account for

the quantum confinement energy of the pores [Cassidy et al. 2010a]. The resulting
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Figure 7.1: Simulated trajectories of 10 Ps atoms in n = 13,k = +11, initially traveling
with perpendicular velocities of ∼60 km/s (kinetic energies of ∼33 meV). The
black bars represent a cross section of the electrodes, A is the target electrode, B
and D are both electrodes with a transmissive circular mesh similar to the ones
shown in figure 6.4(b), and C is a 3 mm thick square electrode with a 13 mm
hole in the center, which acts as the center of the trap. The time since laser
excitation is shown in the top right of each panel. The white lines denote the
trajectories of each atom backtracking to t = 0, the color scale represents the
electric fields generated by the electrodes, the scale is truncated at 8.3 kV/cm
where the field-ionization rate for n = 13,k =+11 exceeds 108 s−1.
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velocity distribution was made to match our TOF results shown in figure 6.7.

Positronium atoms were generated in the n = 13, k = +11, |m| = 1 state, and

their trajectories were calculated as described in section 6.4, The time profile of

each electrode when the voltage is being switched was modeled as a modified error

function given by

erf(x) =
2√
π

∫ x

0
e

−(t− t0)2(
τsw

4
√

ln(2)

)2

dt, (7.1)

where t0 is the time at which the switch is triggered, τsw is the full rise time of the

high voltage switches that we use in our experiments and in this case it was fixed to

50 ns (as can be seen in figure 2.24), then the error function was shifted and scaled

accordingly to match the simulated applied voltage to the electrode in question.

Figure 7.2 shows the simulated switching field due to one of the electrodes and

the corresponding measurement for such field, demonstrating that the fields applied

in the simulations shown in figure 7.1 are attainable in the current experimental

arrangement.
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The results shown in figure 7.1 show both deceleration and trapping, this is

achieved by turning off the field once the atoms have transferred some of their

kinetic energy into potential energy by entering a large electric field region. In this

case this happens between the first and second panel in figure 7.1 where the voltage

applied to electrodes A and B is decreased from 5.5kV to 0 V, then the voltage

applied to C is increased from 0 V to 5.5kV forming the electric field minimum

seen in the last two panels. The voltage applied to D is always 0 V.

In this electrode configuration the simulations suggest that we should be able

to extract ∼12 meV of energy from a portion of n = 13 atoms (as shown in fig-

ure 7.3(a), n = 13 would be the most efficient n to be guided), leading to a trapping

efficiency of ∼ 2.7%. It is also worth noting that another version of these simula-

tions was performed in which we made use of a 1200 K beam Maxwell Boltzmann

distribution without truncation at low energies due to quantum confinement, these

distributions would be attainable by using hot metal targets which produce thermal

Ps [Mills 1979], if we could use this type of targets instead of SiO2, the simulations

suggest that we could achieve efficiencies of up to 5% [as shown in figure 7.3(b)],

this possibility is also currently being investigated, however preparing metal film

targets usually require very stable vacuum conditions, and an alternative option of

metal “beads” is being considered [Voigtlnder et al. 2008].
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We found that for our experimental limitations, including voltage switching

time τsw, maximum switching voltage, and small percentage of low-energy atoms,

n = 13, k = +12 would be the most efficient state to trap, since higher states have

lower ionization energies, and thus will always have less energy extracted before

ionizing, and lower states require fields that we cannot easily achieve with our cur-

rent electronics, and they would have significantly lower fluorescence lifetimes.

7.2 Positron-atom bound states and Rydberg scatter-

ing
The feasibility of producing positron-atom bound states by means of Rydberg

positronium scattering has been investigated in section 6.4, the simulations shown

in figure 6.11 suggest that his can be done with with pressures (of atomic Zn gas)

as low as ∼ 1×10−4 mbar at approximately T = 485K. There are many theoretical

predictions for the existence of these states [Mitroy et al. 2002, Cheng et al. 2011,

Harabati et al. 2014] but they have never been realized experimentally, however it

has indeed been predicted that our Rydberg Ps beam would be suitable for this

experiment [Swann et al. 2016]. This measurement would involve using a hot va-

por cell with an aperture through which Rydberg Ps could traverse, and a sim-

ple attenuation measurement measured by an MCP could be performed. This ar-

rangement could also be modified to perform measurements of scattering rates

of Rydberg Ps with neutral atoms and molecules [Hotop & Niehaus 1968]. It

would also be possible to perform merged beams experiments [Osterwalder 2015,

Gordon & Osterwalder 2017] which would significantly increase the cross sections

measured since the relative velocities between particles would be greatly reduced.

7.3 Gravity measurements
It has been proposed that a free-fall measurement of Ps could be performed in

order to measure the coupling of antimatter to gravity [Cassidy & Hogan 2014,

Mills & Leventhal 2002] (the same has also been proposed for anti-hydrogen

[Charlton et al. 1994]). Our current setup with the curved guide as described in sec-
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tion 6.3 provides a collimated beam of Ps atoms with some control over their veloci-

ties, and some additional focusing (similar to [Jones et al. 2017]) and cooling of the

Ps beam, perhaps by using cryogenic targets may eventually lead to a suitable source

for performing such a free fall experiment. There has already been a proof-of princi-

ple measurement by the ALPHA collaboration [ALPHA Collaboration 2013] con-

sisting of releasing trapped antihydrogen atoms from their trap, which has placed

upper bounds to this possible measurement (i.e., gravitational to inertial mass ratios

larger than 75 may be rejected with 5% statistical confidence).

However, it is far more likely that if an accurate antimatter gravity experiment

is to be performed, the more reliable method is likely to be atom interferometry

[Kasevich & Chu 1991] as opposed to a free-fall experiment. A free fall experi-

ment is unlikely to achieve the level of accuracy that would be needed to detect a

small deviation from the expected free-fall, and it is difficult to scale up. Interfero-

metric measurements have been successful at accurately measuring the gravitational

constant [Biedermann et al. 2015].

It may be possible to perform interferometric measurements with Rydberg Ps,

however, the susceptibility of Rydberg states to electric fields may be incompati-

ble with accurate interferometric measurements, since they would be likely to be

deflected due to their large dipole moment, or field ionized. However if they are

prepared in a circular state, with no dipole moment, these problems may be miti-

gated.

7.4 Precision spectroscopy

In all the experiments described here the electric field in the laser excitation region

is known to within ∼1 V/cm, and in some cases the inhomogeneity of the field

can only be estimated through simulations, not directly measured. If the electric

field could be accurately measured and consequently we could apply field can-

cellation techniques, our arrangement could be used to perform microwave spec-

troscopy between neighboring n states. This could lead to a new measurement

of the Rydberg constant in which the Lamb shift does not include the proton
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charge distribution. This is relevant to the “proton radius puzzle”, a current dis-

agreement in the measured proton charge radius [Pohl et al. 2013] between mea-

surements performed with muonic hydrogen [Pohl et al. 2010] and other measure-

ments of the charge radius, including spectroscopic measurements of hydrogen

[de Beauvoir et al. 1997, Schwob et al. 1999, Parthey et al. 2011], electron scatter-

ing, [Zhan et al. 2011, A1 Collaboration 2010], and the combination of the last two

methods into the accepted value of the proton charge radius [Mohr et al. 2016]. The

measurement for muonic hydrogen disagrees with all of these measurements (ex-

cept for a recent spectroscopy measurement of hydrogen [Beyer et al. 2017] which

identified a series of systematic errors, and after accounting for these, their mea-

surement agrees with the muonic hydrogen value, although the uncertainty of this

value is ∼14 times less precise than the muonic hydrogen experiments).

The transition frequency between two states depends on the Rydberg constant

and the Lamb shift [Mohr et al. 2016]. However, for S states, the Lamb shift in-

cludes the proton charge radius, which cannot be accurately calculated since it re-

quires complicated QCD calculations. The proton charge radius must therefore be

measured directly by electron scattering [A1 Collaboration 2010] or indirectly via

spectroscopy [Beyer et al. 2017]. The latter method of course requires an already

known value for the Rydberg constant in order to calculate the charge radius, it is

this latter method performed with muonic hydrogen that lead to the proton radius

puzzle, since it is believed that the value of the Rydberg constant is accurate, but the

value of the proton radius is in question. However, it is possible that if a measure-

ment of the Rydberg constant is to be performed in Ps, (where the corrections to the

Lamb shift due to the proton charge radius are completely non-existent, unlike any

other system) the resulting proton charge radius value calculated using such value

may be in agreement with the muonic hydrogen experiments.

7.5 Conclusion

Throughout the course of this project a number of significant milestones in Ps spec-

troscopy have been achieved. Efficient optical excitation into selected Stark states
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was achieved (section 5.1) and the lifetime of a range of n states was directly mea-

sured. The laser field polarization used in this excitation was linked to the relative

spectral intensities of each Stark state (section 5.3). A rudimentary form of a Stark

filter was realized (section 5.2) making use of controlled electric field ionization.

Stark and Zeeman mixing in n = 2 Ps was characterized (section 4.1) making mea-

surements that optimize the amount of magnetic quenching by increasing singlet-

triplet mixing using electric fields, and using vertical or horizontal laser polarization

lead to further experiments that allowed for the formation of pure ensembles of 2 3S1

states (section 4.2) with single photon excitation. The characterization of LYSO

scintillators for use in SSPALS detection and single-event counting techniques al-

lowed us to improve the rate at which we are able to perform measurements with

significant signal to noise ratios (section 2.3.2). The first demonstration of Rydberg

Ps manipulation was achieved in the form of guiding low-field-seeking states of Ry-

dberg Ps in a straight quadrupole guide structure (section 6.2) which was modified

to include a 45◦ bend which provided some velocity selection (section 6.3), and

separated the Rydberg Ps path from the interaction region and the positron beam

path.

This opens the door for a variety of different experiments to be performed

after the curved guide such as scattering experiments to generate atom-positron

bound states [Swann et al. 2016]. This work will enable a new generation of Ryd-

berg atom-optics experiments including deceleration, focusing, and trapping which

may be instrumental in making a gravity measurement with Ps Rydberg states

[Mills & Leventhal 2002]. Additionally, it is possible that our experiments could

inform high precision microwave spectroscopy between n states that could lead

to a new spectroscopic measurement of the Rydberg constant without corrections

due to the proton charge distribution, even for S states [Pohl et al. 2013]. If this

value were to differ from the accepted CODATA standard by a relative fraction of

∼ 3.1×10−11, it would contribute towards explaining the proton radius puzzle as a

discrepancy in the Rydberg constant.
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