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Abstract

Methods and techniques in the production, manipulation, and accumulation of
positrons in a ‘Surko-type’ buffer-gas trap are presented. The pulsed output of the
trap is optimised for laser excitation of positronium (Ps). The techniques of posi-
tron time compression and single-shot positron annihilation lifetime spectroscopy
(SSPALS) are discussed in detail and used throughout the study.

A small array or Ps converter materials have been characterised at various tem-
peratures. Ps cooling as a function of positron implantation is presented and dis-
cussed. Direct laser irradiation of the samples, and the effect on the Ps yield has also
been studied. In some cases, particularly at cryogenic temperatures, laser induced
paramagnetic centres are formed and this has a detrimental effect on the Ps yield as
they cause triplet Ps to convert to the shorter-lived singlet state. Whereas in single
crystal semiconductors, the laser has an enhancing effect due to an exciton-like
positron-electron surface state. Many of the Ps converter materials studied here are
formed from porous structures. The long term confinement of Ps within isolated
cavities has also been observed, where a lifetime measurement technique using an
excitation laser is presented.

General methods of Ps-laser spectroscopy are also presented and the applica-
tions of which are discussed including laser-enhanced time-of-flight spectroscopy
(LEPTOF), and the production, and electrostatic guiding of highly excited Rydberg
Ps. Using these techniques a crossed beam scattering experiment involving Ry-
dberg Ps, electrons, and Argon ions was carried out.

This work presents important considerations for experiments to create a laser-
cooled Bose-Einstein condensate (BEC) of Ps in an engineered porous material at
cryogenic temperatures.
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Chapter 1

Introduction

1.1 Antimatter

In 1928, Paul Dirac derived a relativistic wave equation, marrying the then recent

developments of quantum mechanics and Einstein’s special theory of relativity

[Dirac, 1928a,b]. The quadratic form of the energy, E2 � m2c4 � p2c2, within Ein-

stein’s theory [Einstein, 1905, 1907] lead to an uncomfortable prediction by the

Dirac equation. Seemingly non-physical, negative energy solutions could not be

avoided. Dirac [1930] proposed his "hole theory" , which predicts the existence of

a twin particle to the electron of opposite charge. The theory suggested that in the

vacuum, there exists a "sea" of negative energy electron states which combine to

give a total energy, momentum and spin of zero, the infinite charge is uniformly

distributed across all of space, and thus leads to fields that are not experimentally

measurable. When a hole is created in this negative energy continuum, a particle

with opposite charge to the electron makes a transition into the positive energy

continuum. Dirac initially thought that these particles were protons but this idea

was soon dismissed due to the difference in mass [Oppenheimer, 1930]. The notion
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of an exotic and unobserved form of matter then followed. A particle of the same

mass as the electron that would mutually annihilate upon contact with one was

postulated. Dirac [1931] had predicted the existence of antiparticles. This idea was

not taken seriously in 1933:

Dirac has tried to identify holes with anti-electrons...We do not be-

lieve that this explanation can be seriously considered.

Handbuch der Physik , 24, 246 (1933)

However, the previous year, experimentalist Carl Anderson had imaged the

paths of positively charged particles as they passed through a lead plate whilst he

studied cosmic rays. He concluded that these particles could not be protons as the

curvatures within his cloud chamber suggested a mass much smaller than would

be expected. An observation that had occurred previously but was dismissed and

not followed up [Merhra and Rechenberg, 2000]. The curvatures suggested a mass

comparable to that of the electron. The discovery was later confirmed by Blackett

and Occhialini [1933]. Dirac’s anti-electron had been discovered. These particles

were named positrons, and the discovery earnt Anderson a share of the 1936 Nobel

prize. Dirac’s ‘hole theory’ was later replaced by ‘local relativistic quantum field

theory’ or quantum electrodynamics (QED) [Feynman, 1949a,b; Tomonaga and

Oppenheimer, 1948]. The study of antimatter allows the testing of fundamental

theories like QED, and CPT symmetry. The asymmetry of matter and antimatter in

the observable universe remains one of the most challenging questions in modern

physics. Studying simple systems involving antiparticles is an essential endeavour

in the quest for a complete model of nature.
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1.1 Antimatter

Figure 1.1: A 63 million volt positron, passing through a 6mm lead plate, and emerging
as a 23 million volt positron. Carl Anderson concluded that the length of the
latter path is at least ten times longer than what one would expect for a proton
of the same curvature. [Anderson, 1933].

1.1.1 Positrons

The positron is the electron antiparticle. It possesses the same mass-energy, spin

and charge magnitude as the familiar electron. The sign of the charge is however

opposite. The production mechanisms for positrons are β� radioactive decay and

pair production from high energy photons. Both electrons and positrons are stable

in vacuum but, due to the opposite values of their additive quantum numbers,

the two particles can decay into photons when they interact. The entire system’s

mass-energy is converted into energetic gamma rays in an annihilation event, in

accordance with E �mc2. In general, the lifetime against annihilation of a positron

in an environment containing matter is inversely proportional to the local electron

density. In condensed matter such as metals this is typically 250 ps [Cotterill et al.,
1972], whilst in gasses this may be considered as the minimum lifetime against

annihilation.
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1.2 Positronium

A positron can also exist in a neutral bound state with an electron. This is a posi-

tronium atom (Ps) and the first observations of Ps formation were performed by

Deutsch [1951] at MIT. He later went on to measure the Ps Zeeman and hyperfine

splitting [Deutsch and Brown, 1952]. Ferrell [1951] contributed to the theory of

the fine structure between the 13S1 and 11S0 ground states of Ps.

Figure 1.2: Schematic diagram of the lowest energy levels of Ps. The numbers separat-
ing the sub levels are given in MHz. The Lyman-α wavelength indicating the
distance between n = 1 and 2 is also shown. Drawn from Ley [2002].

Positronium is more elementary in structure than the well understood hydro-

gen atom, and one can solve for the energy eigenvalues of Ps by using the non-

relativistic Schrödinger equation, in the same way as hydrogen. The energy level

structure for the ground and first excited states is shown in figure 1.2, where the

levels are grouped into a singlet spin state, S = 0 and and triplet, S = 1 as the

system is comprised of two fermions.
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Each state is designated by n2S�1LJ , where L and J are the orbital, and total

angular momentum.

Due to the reduced mass of the system,

µ�
m�m�
m��m�

� pm�{2q (1.1)

if m� � m�, where m� and m� are the positron and electron mass respectively,

the gross values of the energy levels are half of that of hydrogen [Ley, 2002]. For

example the binding energy EP s = - 6.8 eV. The fine and hyperfine levels are more

complicated than in hydrogen. This is due to the large magnetic moment of the

positron in comparison with the proton, QED, and annihilation effects [Rich, 1981].

The requirement of the invariance of charge conjugation during an annihilation

event, led Yang [1950] and Wolfenstein and Ravenhall [1952] to the following

selection rule. It states that a positronium atom with total spin S, and orbital

angular momentum L can annihilate, releasing nγ photons. The selection rule is

given by,

p�1qnγ � p�1qL�S . (1.2)

This rule states that singlet Ps in the ground state (S = L = 0) can only annihilate

with an even number of gamma photons, whilst the triplet state (S = 1, L = 0) can

only annihilate with an odd number of photons. For the singlet state, known as

para-positronium (p-Ps), the dominant annihilation decay mode is through the

release of 2γ-ray photons. Whereas the triplet state, ortho-positronium (o-Ps),

predominantly decays with 3γ-rays [Ore and Powell, 1949]. The triplet state can

annihilate with a single photon. However the probability of this decay mode is

suppressed by the requirement of a third body to absorb the excess momentum.

All states of Ps have a finite lifetime. In the ground state the the annihilation rates

for the singlet and triplet sub states are � 8 GHz for (p-Ps) and � 7 MHz for (o-

Ps) [Ore and Powell, 1949]. The inverse of these annihilation rates are the mean
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lifetimes against annihilation, these are 0.125 ns [Al-Ramadhan and Gidley, 1994]

and 142 ns [Vallery et al., 2003] respectively. For n ¡ 1 the decay rates also have a

contribution from spontaneous emission. Both the annihilation and spontaneous

emission rates depend strongly on the principle quantum number n.

1.2.1 Rydberg positronium

The lifetime against annihilation for low angular momentum (L) Ps states increases

with n3, this is because the annihilation rate depends on the probability dens-

ity, and hence the excited state wave function squared, evaluated at the origin of

a spherical polar coordinate system. The annihilation rate therefore scales with

n�3 [Berko et al., 1980]. The spontaneous emission rate also scales with n�3 in

the absence of an external field. This leads to an n3 dependence on the fluores-

cence lifetimes (τf luor). For Ps in the 2p state in the absence of an external field,

τf luor = 3.19 � 10�9s [Hogan, 2013]. Ps is unlikely to annihilate in the 2p state

as τf luor dominates the decay rate [Gallagher, 1994]. Extended lifetimes against

annihilation are essential for many experiments involving Ps, and the lifetimes can

be extended with excitation to Rydberg states. An atom is in a Rydberg state if the

principle quantum number n is high, and the atom displays exaggerated properties

[Gallagher, 1994]. Electric dipole transitions of Ps to longer lived Rydberg states

can be initiated optically (see chapter 4).

The lifetime of Rydberg states are in general, strongly effected by external fields.

Ps is unusual in that the linear Zeeman effect is suppressed due to cancellation

effects of the positron and electron magnetic moments. For Ps prepared in large

magnetic fields (¥ 1 T), the induced electric field from the motional Stark effect

becomes significant. However, for the experiments explained in later chapters, the

applied magnetic fields are too small to observe these effects. For atoms prepared

in 2p states, the combination of magnetic, and electric fields can cause mixing of

singlet and triplet states [Curry, 1973]. This can result in a reduced lifetime against

annihilation which can be controlled with the applied fields, and the polarisation

of the excitation laser pulses [Alonso et al., 2015]. Rydberg Ps does however interact
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strongly with applied electric fields and this is due to the linear Stark shift and the

large dipole moments which scale with n2. The Ps electric dipole moment for a

given n is approximately twice that of the corresponding Hydrogen atom due to

equation 1.1 and its effect on the Bohr radius. The maximum induced Ps electric

dipole moment associated with a particular Rydberg state is given by,

~µ�
3
2
n2ea0P s, (1.3)

where e is the electron charge, and aP s = 2a0 is the Ps Bohr radius, equal to 1.058

� 10�10 m. The Stark energy shifts and the forces that can be applied to Rydberg

Ps via electric field gradients are therefore significantly larger than observed in

Hydrogen. Hogan [2013] presents a calculation of the Stark energy shifts observed

in Ps Rydberg states, obtained via the application of perturbation theory to the zero

field solutions of the Schrödinger equation expressed in parabolic coordinates. To

the second order the Stark energy shift is given by,

EStark �
3
2
nkea0P s|~F| �

1
16
n4p17n2� 3k2� 9m2� 19q

e2a2
0P s

EhP s
|~F|2, (1.4)

where EhP s = 2hcRyP s is the Hartree energy for Ps, and k is the difference

between two parabolic quantum numbers [Gallagher, 1994] and represents the

level of dipole alignment with the external field. Hogan [2013] gives EStark to the

fourth order from D. Kleppner and Zimmerman [1983]. The curvature of each state

shown in figure 1.3 toward lower energy with increasing electric field strength is a

consequence of the quadratic term in equation 1.4.

The figure shows that at reasonably modest electric fields, individual Rydberg-

Stark states can be separated. |m| = 2 Rydberg states were calculated as the angular

component of the spectral intensity of a 2p - nd transition depends on the azimuthal

quantum number m of the 2p state, and the value ∆m, and it is transitions where

m = 1 (2p) and m = 2 (nd) that are strongest [Hogan, 2013].

The split states are each denoted with the index value k. As the atoms move
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Figure 1.3: Stark map depicting the energies of the |m| � 2 Rydberg states of Ps with values
of n between 23 and 27 in the presence of an external electric field [Hogan,
2013].
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between regions of differing electric field strength, the internal energy is shifted

according to the electric dipole moment and this will change the atom’s kinetic

energy as a result of the conservation of the total energy. Increasing the field

strength will either speed the atom up, or slow it down depending on whether the

Stark shift is positive, or negative. Rydberg-Stark states can therefore be grouped

into low-field-seeking (lfs) states with positive shifts (k ¡ 0), and high-field-seeking

(hfs) states with negative shifts (k   0). Rydberg Ps is however susceptible to

ionisation by an electric field and the field required to ionise Rydberg Ps scales

with n�4 in general but there is also a dependence on the index k (see chapter 4).

1.3 Motivations

We have built a pulsed beam of slow positrons for the purpose of positronium

production and experimentation. The system is optimised for pulsed laser spectro-

scopy of Ps. We study positronium because it has applications, and offers insight

into many areas of fundamental and applied physics and chemistry. In particu-

lar, Ps has some interestingly unique properties when compared to other atoms.

For example, it is its own antiparticle and it can be described well using QED

[Karshenboim, 2004], offering a system to test the theory. It is purely leptonic

system without the presence of hadrons and the strong nuclear interaction, which

could enable a precision spectroscopic measurements associated with an accurate

determination of the Rydberg constant. This may have implications which shed

some light on the proton size discrepancy [Antognini et al., 2013]. Gravitational

measurements on highly excited, long lived Rydberg-Stark states of positronium

could lead to insights into the behaviour of antimatter in the gravitational field of

the earth [Mills and Leventhal, 2002]. It is envisioned that a gravitational meas-

urement would exploit the large electric dipole moments possessed by Rydberg

Ps allowing the use of atom optics techniques previously demonstrated for other

atoms and molecules, including mirrors [Vliegen and Merkt, 2006] and lenses [Vlie-

gen et al., 2006]. Long lived Rydberg-Stark states of Ps can also be transported with
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field gradients for the purpose of antihydrogen production via charge exchange

interactions [Deutch et al., 1993; Hessels et al., 1998]. Production of an efficient

source of many antihydrogen atoms is an exciting prospect as it may provide a

method of answering the questions of matter-antimatter asymmetry in the observ-

able universe. Directly measuring if there are any differences between matter and

the antimatter partners may aid understanding of why our universe is made almost

entirely of matter, despite the prediction of the current standard model that matter

and antimatter should have been produced in equal quantities during the big bang.

Another exciting prospect that the study of Ps offers is an observation of a

Bose-Einstein condensate (BEC) of Ps, a system which could also provide a grav-

ity measurement which utilises atomic interferometry [Cassidy and Mills, 2007b;

Kasevich and Chu, 1992]. A Ps BEC could also facilitate the study of stimulated an-

nihilation radiation, and perhaps the production of a γ-ray laser [Avetissian et al.,
2014; Bertolotti and Sibilia, 1979]. Developments of such a laser could produce a

short wavelength beam suitable for probing nuclei, or a very powerful device used

in orbit to protect the earth from large asteroids. These experimental endeavors

may be enabled through the mastery and development of the techniques explained

throughout this thesis.
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Chapter 2

Positron Beams

β� decay from a radioisotope such as 22Na is the most convenient source of posi-

trons for experimentation in a small laboratory. Some facilities do utilise linear

accelerators to produce positrons via pair production [Cowan et al., 1993; Michishio

et al., 2011; Nagashima, 2014] but such sources are large in size. For a smaller labor-

atory, a radioactive isotope is a convenient alternative. 22Na is selected as it has

a large branching ratio for (β�) emission (90.2%), a half-life of 2.6 years and it is

commercially available with activities as high as 2 GBq. The decay scheme of 22Na

also has a rather striking feature in the production of an excited state of 22Ne that

rapidly decays via the emission of a 1.274 MeV photon. This photon can be used as

a start signal in a positron lifetime measurement. This chapter gives an overview

of the positron beam and trap which we assembled at the beginning of this study.

11



Positron Beams

2.1 Positron moderation

To study systems containing many Ps atoms one needs a steady supply of positrons

in the form of a beam. Positrons emitted from a β� source have broad energy dis-

tributions. For 22Na the β� energy spectrum is peaked at 178 keV and its endpoint

energy is 545 keV. To reduce this large spread of energies, moderating materials are

placed near the positron source. The efficiency of an energy moderating material

ε, is defined as the number of slow positrons that emerge from the material per β�

particle emitted from the source. Metals do emit positrons with a narrow spread

of energy [Mills, 1989] but they often have low efficiency.

By depositing Neon gas onto the source and allowing it to solidify at low tem-

perature Mills and Gullikson [1986] were able to effectively double the efficiency

previously achieved with single crystal tungsten. They measured ε = 0.70 � 0.02%

using a cylindrical geometry. Further improvements of ε were found by R. Khatri

et al. [1990] who investigated the benefits of altering the geometry of the gas de-

position to a conical arrangement. They achieved an efficiency, ε = 1.4 � 0.2%.

The increased efficiency in solid rare gasses is due to the positrons being emitted

before they have lost all of their initial kinetic energy. Large diffusion lengths al-

low positrons to travel to the surface and escape into vacuum having undergone

some cooling within the deposit. ε is higher as a result, but the energy spread of

positrons emitted from solid Ne is larger than a metallic moderator.
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2.1.1 The positron source

A 22Na sample is mounted behind a conical aperture. The unit is thermally coupled

to, but electrically isolated from, a closed cycle helium cryostat. The cone is held

between 5 and 8 K during positron beam operation. At the time of purchase (March

2013) the activity of the source was � 2 GBq. We therefore estimate that at the time

of writing, the activity of the source is � 0.6 GBq.

The source chamber is evacuated to a base pressure of � 2 � 10�9 mbar. Two

water cooled coils separated by their radius surround the source chamber which is

encased in a large tank filled with lead grains. Figure 2.1 shows the DC positron

section of the beam-line.

Figure 2.1: Schematic layout of the DC positron beam. Differential pumping is employed
to protect the moderator from contaminants emanating from the positron trap.
This is aided further by using two 8 mm diameter tubes located inside the
second and third yellow solenoids which make up part of the magnetic guidance
system. A pair of saddle coils is used to guide slow positrons over a velocity
selection barrier. This beam is discussed in detail in Cooper et al. [2015]
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It is important that a solid rare gas moderator is protected from contamination

from gasses in the trap (See section 2.2) and elsewhere within the vacuum system.

Limitation of contaminants diffusing to the source chamber is achieved with dif-

ferential pumping along the DC section of the positron beam, and is aided further

with conductance limiting inserts.

2.1.2 Moderator growth

When replacing an old, decayed moderator, the cold head expander is switched

off, allowing the system’s temperature to rise to around 20 K. Any remnants of

an old moderator are thermally desorbed. With the cold head expander back on,

the system is allowed to return to base pressure and temperature. The source is

then heated to between 7-9 K (base temperature
r

5 K), which is maintained by

a resistive heater. The slight increase in temperature yields more positrons and

this may be due to annealing of the Ne deposit as it is being formed. At a slightly

elevated temperature, the surface layers are also less likely to absorb contaminants.

Neon gas is then admitted to the cone via a small tube (figure 2.1).

We have found that there are great benefits to be had by growing the moderator

at a fast rate with a higher Ne pressure. This is presumably due to less opportunity

for contamination within the Ne deposit. This also improves the longevity of the

moderator, increasing the period of use from several days to a number of weeks.

However, moderator longevity is also heavily dependent on the vacuum quality that

is achieved before, and after the growth sequence is initiated. A typical moderator

growth curve following a fast growth (� 8mins) is shown in figure 2.2 (a), which

yielded around 5.9 million positrons per second. The Ne pressure, as measured

by a local ionisation gauge is � 1 � 10 �3 mbar. Previously much slower growth

cycles were used, typically with a Ne pressure � 3 � 10�4 mbar, for around 25-

40 mins. This method would yield on average, a final count rate of around 4-5

million positrons per second, with a much faster decay. In recent months the best

achievable beam strengths are around 3.5 million positrons per second and this is

due to the age of the 22Na source.
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Figure 2.2: (a) Moderator 29 (5th Jan 2015). There is a steady increase in count rate (solid
line) as the Neon gas pressure is increased (dotted line) over the growth period
of around 9 minutes. As the count rate reaches a plateau, the Neon inlet is
closed, causing a rapid increase in count rate, due to a reduction in gas atten-
uation of positrons. The temperature (dashed line) was set to 7.7 K during
growth. The final count rate is

r

5.9 million positrons per second. (b) Moder-
ator 20 (12th Nov 2014). The lower temperature, pressure and growth time
produces a weaker beam of

r

4.9 million positrons per second.
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2.1.3 Magnetic transport

An axial magnetic field is used to guide positrons along the beam line, from the

source to the target chamber. Solenoid magnets are used as they provide the most

uniform fields. However, they form only part of the beam as they prevent access to

the vacuum system. In the gaps between solenoids we use a series of coils which

are separated by a distance approximately equal to their radius. The positrons

which form the slow beam and those which are trapped and ejected towards the

Ps experimentation section are slow enough such that they follow the magnetic

field lines. The field strength along the beam line is however non uniform. For

a positron traveling between two points within the extent of the magnetic field,

the position in the perpendicular (radial) direction can be found with the initial

position (r0,x0) and the difference in field strength at the two points,

r � r0

d
Bx
Bx0

. (2.1)

Qualitatively, this means that a positron beam is compressed in regions of high

magnetic field, but in regions of lower field, the beam is larger. The magnetic field

in the trap is � five times larger than that of the Ps experimental region therefore

leading to a beam size increase by a factor of around 2.2.

It is often the annihilation radiation which is to be detected at the opposite end

of the beam line. In this case the detection apparatus must be properly shielded

from the source so that one can separate the annihilation events caused by fast

positrons with those from the slow positron beam or trap output. A pair of saddle

shaped coils are used to guide the low energy beam over a solid barrier. The

positron beam is also imaged using a micro channel plate (MCP) and phosphor

screen assembly.
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Figure 2.3: Slow positron beam imaged on MCP phosphor screen assembly with a 3D rep-
resentation and 2D slices projected onto the axes. [Cooper et al., 2015]
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Figure 2.3 shows the ring shaped beam as imaged on the MCP phosphor screen.

The hole in middle is due to the conical geometry shown in figure 2.1. The magnetic

fields at the source and the MCP are approximately the same (� 13 mT). Figure 2.3

is thus a good representation of the beam size at the origin.

2.2 Positron trapping

The trapping and storage of positrons at low energies allows many scientific aven-

ues to be realised. Studies involving the binding of matter with antimatter is of

great interest, positronium being the prime example. Achieving a source of cold

and trapped positrons is very useful in the production of antihydrogen [Gabrielse

et al., 2002; Madsen et al., 2014], which in turn allows tests of fundamental sym-

metries such as the CPT theorem. Other applications of tailored positron sources

include medicine, for example, positron emission tomography (PET) [Fischer et al.,
2001] and materials science [Gidley et al., 2006]. The device of choice is often a vari-

ation of the Penning trap [Malmberg and deGrassie, 1975; Malmberg and Driscoll,

1980], which is a trap that confines particles in the radial direction by utilising a

uniform magnetic field, whilst restriction in the axial direction is achieved by an

electrostatic potential.

A Surko trap is a buffer gas (BG) trap which comprises of multiple stages of

varying pressures of a neutral gas. The selection of the type of gas must consider

the cross sections for direct annihilation, inelastic scattering, and Ps formation.

With N2 the inelastic scattering cross section for electron excitation is fairly large,

allowing the positrons to quickly lose energy through inelastic collisions. The cross

section for Ps formation is also large and this is the main loss mechanism when

using N2 as a buffer gas [Marler and Surko, 2005a]. Positrons in the eV range

will excite an electronic transition within the gas molecule it is colliding with.

Between 0.05 to several eV, vibrational transitions dominate and below 0.05 eV

it is rotational excitations which achieve further cooling [Surko, 2010]. The cross

sections for vibrational and rotational excitations with N2 are small. To achieve
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further cooling via these transitions, a small amount of CF4 [Natisin et al., 2014] is

added to interact with positrons in the final stage of the trap.

The gas pressure in the first stage of the trap is tuned such that a positron

will collide on average one time per transit. This enables a suitable loss of energy,

leading confinement within the later stages which form a potential well. Positrons

are prevented from reflecting backwards, leaving the trap, and eventually being

lost to annihilation somewhere near the source. Further energy loss is achieved

through additional electronic excitations in later stages of the trap, which are at

lower pressures. The lower energy, vibrational and rotational cooling is achieved in

the final stage via interactions with the secondary gas. The final stage can be located

in a separate, differentially pumped section of the vacuum system for increased

positron lifetimes [Cassidy et al., 2006a]. The main benefit of this approach is

the reduction of the pressure in the location of positron storage, as it is separated

from the BG, lengthening the lifetime against annihilation. A long storage lifetime

allows one to accumulate many more positrons. Cassidy et al. [2006a] successfully

generated intense pulses containing � 6 x 107 positrons, following ejection from

an accumulator. This accumulator was loaded by opening the trap at a frequency

of 4 Hz. With additional time compression a 1 ns pulse width was achieved. The

high density pulse corresponded to an instantaneous positronic current of 10 mA.

However, for the experiments explained here higher density pulses achieved with

an accumulator are not required.

The trapping and cooling of positrons enables us to manipulate them into short,

intense pulses. This in turn allows us to produce large numbers of Ps atoms in

pulses, and perform Ps spectroscopy experiments. By storing positrons from a weak

DC beam (with a large energy spread) one may produce either a high quality, pulsed

positron beam (∆E
r

25 meV), for use in scattering experiments for example [Marler

and Surko, 2005b], or an intense pulsed beam [Cassidy et al., 2006a; Greaves and

Moxom, 2003], for use in experiments involving many positrons. Several facilities

that employ this type of positron production and trapping method are now in

operation, where many different experimental areas have been, and continue to be
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explored [Andresen et al., 2010; Cassidy et al., 2006a; Clarke et al., 2006; Sullivan

et al., 2010].

The device which this thesis is based upon is explained further in Cooper et al.
[2015]. The positron trap is that of a Surko type with two stages. The electro-

static potential in each region varies, forming a potential well structure during the

loading phase of the trap. A cutaway schematic of the trap is shown in figure 2.4

(a).

A comparison of the cross sections for the positron interaction processes is

shown in figure 2.4(b). It is through inelastic collisions with the N2 BG that enable

positrons to slow down to the potential well energy shown in 2.4(c).

Compression of the ensemble of positrons in the radial direction is achieved

with a "rotating wall" (RW) electrode, operating in a broad frequency range [Greaves

and Moxom, 2008]. A similar type of compression method is used in experiments

involving plasmas [Danielson and Surko, 2005; Greaves and Surko, 2000; Huang

et al., 1997]. The technique involves the application of a series of sinusoidal voltages

to a segmented cylindrical electrode with an appropriate phase shift applied to each

segment. The voltage applied is of the form

VRW ptq � VRW sinpωRW t�φq, (2.2)

where VRW andωRW are the amplitude and frequency of the sinusoidal function

generated by an arbitrary waveform generator, andφ takes on increasing quantities

of π
2 and is applied to adjoining segments. The electrode used in this study is

segmented into four quarters. Figure 2.5 shows the affect of varying the applied

frequency and amplitude of the sinusoidal function on the output of the trap.

In the reference frame of the positrons at the bottom of the potential well shown

in figure 2.4 (c), the electric field will appear to rotate which in turn applies a torque.

For the trap described here, the accumulated positrons are not dense enough to

enter the plasma regime. The ensemble of positrons is non interacting which

prevents the propagation of plasma modes. Compression is however still observed
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Figure 2.4: (a): Extension of figure 2.1 covering the two-stage Surko type positron trap.
(b): Cross sections in atomic units for positron-impact, electronic excitation
in N2 and positronium formation. The dashed and vertical bars indicate the
thresholds for electronic excitation and positronium formation, respectively.
Drawn from Marler and Surko [2005a]. (c) Top: Scaled drawing of the trap
electrode structure, including the segmented rotating wall electrode. Bottom:
Axial potential during the trapping phase, calculated with SIMION. [Cooper
et al., 2015]
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Figure 2.5: Variation of the amplitude and frequency of the applied rf signal and the effect
on the trapping efficiency. The maximum output (white) corresponds to a
trapping efficiency of � 5 %

in what is known as the ‘single particle regime’ which works on the basis of the rf

drive frequency being close to the axial bounce frequency of the trapped particles

[Greaves and Moxom, 2008].

The process of compression causes heating of the positrons through resonant

interactions with the particle motion. Cyclotron cooling is adequate provided that

the magnetic field is strong enough to cause sufficient cooling within the positron

lifetime in the trap. However, with a modest magnetic field of � 50 mT the CF4

molecular gas (�
PN2

5 ) facilitates vibrational and rotational cooling [Natisin et al.,
2014].

In order to measure the lifetime of positrons in the trap, the length of the trap

loading time was varied. Figure 2.6 shows trap accumulation data from the posi-

tron annihilation signal following the output of the trap. The ideal loading duration

is when the amount of positrons lost per cycle is minimised with maximum output,

i.e near the highest point of the linear region in the data shown in figure 2.6.

22



2.2 Positron trapping
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Figure 2.6: Accumulation curve yielding an estimation of the positron lifetime within the

trap. τ was extracted by fitting equation 2.3, and has a value of 1.80 �0.08 s.
The accumulation rate is found as 0.60 � 0.03 Hz. The trap output is consider-
ably lower without rotating wall compression. [Cooper et al., 2015]

The trap output was recorded via annihilation radiation following positron

collision with a solid barrier. The pk-pk voltage of this annihilation signal, which is

directly proportional to the amount of positrons released, was recorded and plotted

against the inverse of the trigger frequency.
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The gate electrode was lowered to 0V from 52V at a variable rate controlled by

a pulse delay generator. The data is fitted to

Neptq � Cp1� e
�t{τq, (2.3)

where τ is the positron lifetime in the second stage of the trap and C = Rτ , where

R is the accumulation rate.

With the RW on, the measured lifetime is almost entirely due to interactions

with the gas molecules in the trap. Without the RW there is an increased annihila-

tion rate due to positron diffusion towards the trap electrodes [Deller et al., 2014].

The operational range of the trap is 0.5 - 10 Hz. For most applications the trap is

operated at 1 Hz as this offers a high number of positrons and is easily synchronised

with our pulsed lasers that typically operate at 10 Hz (see chapter 4).
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2.2 Positron trapping

2.2.1 Trap output pulse

When running the trap at 1 Hz with an average moderator the trap releases around

105 e�s�1. Single positron annihilation events were used to calibrate a detector

comprised of a scintillation material and PMT. This was done when the slow posi-

tron beam passed through the system with the trap switched off. The pk-pk voltage

recorded for the single events which were on average received at a rate of � 1 µs�1

was then scaled for the case of maximum trap output and solid angle leading to a

measurement of the number of trapped positrons.

The output pulse can also be imaged at the MCP (figure 2.7). Spatially, the trap

outputs a pulse of positrons which have a Gaussian distribution. With rotating

wall compression active, the spatial width of the pulse is 2.57 � 0.01 mm FWHM.

The beam is approximately three times wider and three times less intense without

the RW (see figure 2.6). The distance scale in the recorded image was calibrated

by allowing the positron pulse through a 2 mm aperture in the target region. This

was done as there is a different magnetic field strength at the target compared with

the MCP, which is indicated in figure 2.7.

We aim to make many Ps atoms which can be excited by pulsed (ns) lasers. In

order to overlap the Ps atoms with the laser pulses in time we must temporally

compress the output of the trap. Liouville’s theorem [Liouville, 1838] is the ulti-

mate constraint on bunching in the presence of non-conservative forces. As the

full volume occupied in phase space by the particle ensemble is conserved, one

can distort the phase space in one dimension i.e velocity at the cost of distorting

another in an opposing fashion. For example, if the velocity of a particle group can

be compressed i.e ‘time bunched’ then the energy spread is increased.

Two bunching methods have been used during the course of the study. Firstly,

we applied a pulse directly to the trap electrodes which caused the positrons to

leave the trap in a time-bunched packet. This was achieved with a fast ramp voltage

of
r

180 V, applied to all of the trapping electrodes. This produces pulses of around

105 positrons, which are of a Gaussian distribution spatially, as shown in figure

2.7.
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Figure 2.7: Top: Trap output pulse imaged, using the same detectors as in figure 2.3 the
spatial width is 2.57 � 0.01 mm FWHM [Cooper et al., 2015]. Bottom left:
Image of beam passing through 2 mm alignment hole. Bottom right: Full beam
imaged after lifting the alignment hole out of the beam path.
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2.2 Positron trapping

This buncher is similar to other versions [Mills, 1980] except that each buncher

section or ring has its own individually tuned avalanche pulser voltage which is

applied on top of and independently of the DC bias voltage (figure 2.4 (c)) and the rf

rotating wall voltages which are applied to the segmented electrode near the end of

the trap. This bunching method is appropriate for a short flight path from the trap

to the target, such as the setup shown in figure 2.8. This arrangement is explained

in detail in Cooper et al. [2015], and has facilitated a range of experiments including

Ps production, time-of-flight studies [Deller et al., 2015b], and the production of

Rydberg-Stark states of Ps [Wall et al., 2015].

Figure 2.8: The DC positron beam and trap coupled to a Ps formation and excitation cham-
ber. The distance from the trap to the target is

r

0.5 m. The magnetic fields at
the source, in the trap center and at the MCP detector are approximately 13,
50, and 13 mT respectively. [Cooper et al., 2015].

For some experiments an extended beam line is required and the bunching

method must be adapted. Pulsing directly from the trap is limited as the output

starts to diverge in time as the trap-target distance increases. This limitation is

overcome by using a simple ‘pull-down-gate’ switch which allows positrons out of

the trap without bunching. Then, following magnetic transport along the beam-

line, time-bunching is performed closer to the target. A potential is applied along

a series of rings which are aligned to the beam axis, this buncher is shown in figure
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6.2. The applied potential varies quadratically with distance due to the resistance

between each ring. The pulse is applied via a fast solid state switch. The positrons

within the ring structure see an approximately harmonic potential. The switch

pulse time is delayed relative to the trap opening to allow for transit from the trap

to the buncher rings. A typical bunched positron pulse is shown in figure 2.9.
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Figure 2.9: Annihilation signal of bunched positrons on a metal surface. The measurement

was performed at the position of Ps production using a Cerenkov radiator and
PMT. The fit to the data is convolution of the detector response with the Gaus-
sian shape of the the positron beam and is explained further in Cooper et al.
[2015].

Both bunching methods produce positron pulses of ∆t
r

4 ns as measured at

the Ps converter target, which is suitable for temporal overlap with lasers of ∆t
r

6

ns. However, the measured time-width is dependent on the distance between the

buncher and target, and the size and timing of the applied voltage pulse.
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Chapter 3

Detection and measurement of
Positronium

When a beam of slow positrons is incident on a target material, formation of the

Ps atom is possible. The amount of Ps produced varies depending on the mater-

ial but can be large for porous insulators. Detection of Ps can be achieved using

annihilation γ-rays, and the timing associated with their detection. The detect-

ors must be fast enough to differentiate between photons emanating from direct

positron-electron annihilation, and photons that have a delay associated with the

decay of o-Ps. p-Ps is too short lived (picoseconds) for detection using the methods

explained here. The longer lifetime of o-Ps (nanoseconds) is detected using scintil-

lation materials and photo multiplier tubes (PMT). Long lived Rydberg-Ps can also

be detected via impact with a micro-channel plate (MCP).
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Detection and measurement of Positronium

3.1 Single shot positron annihilation lifetime spectro-

scopy

To study processes involving many positrons and positronium atoms, a packet of

positrons (� 105 s�1) is ejected from the trap. The pulse (∆t
r

4ns) is then im-

planted into a Ps converter material. Data is analysed with single-shot positron

annihilation spectroscopy SSPALS [Cassidy et al., 2006b], which is a method of de-

tection and analysis of annihilation radiation. The basic methodology is as follows:

The positrons are implanted into a material in a short pulse and this produces a

continuous burst of annihilation γ-rays. A fast scintillating material undergoes lu-

minescence when exposed to the ionising radiation. Scintillation light is converted

into an electrical pulse with a PMT which is divided between two channels of a 1

GHz, 12 bit digital oscilloscope with a 50 Ω tee. The waveform from each channel

are then spliced together and a constant fraction discriminator (CFD) algorithm

is used to determine the trigger time (t = 0), configured for the leading-edge of

the prompt peak. Division of the PMT output is done as it is necessary to observe

the detector response over two separated channels, allowing us to avoid saturation

of the signal in the early part of the spectrum whilst recording delayed events at

a high gain. The timing characteristics of the SSPALS technique depend on the

intrinsic response of the detector. SSPALS is ultilised here with two independent

detectors which comprise of two types of scintillation materials: lead tungstate

(PbWO4) [Cassidy et al., 2006b], and cerium doped lutetium yttrium oxyorthosilic-

ate (LYSO) [Alonso et al., 2016; Cooke et al., 2000]. The SSPALS technique can also

be used with alternative materials such as PbF2 [Cassidy and Mills, 2007a]. An

example spectrum is shown in figure 3.1.
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3.1 Single shot positron annihilation lifetime spectroscopy

Figure 3.1: Lifetime spectra for 1 keV positrons implanted into an aluminium (black) or
porous silica (red) target. The untreated Al surface is not expected to produce
a significant amount of Ps, whereas the delayed signal evident from the silica
target indicates a positron to o-Ps conversion efficiency of � 25%. The step
at around t = 10 ns is due to positrons annihilating on a pumping restriction
aperture downstream from the target region [Deller et al., 2015b].

One can extract from the data, the fraction of annihilation events that are

delayed (fd). This value is found as the ratio of the integrated areas B-C and A-

C,

fd �
» C
B
V ptqdt{

» C
A
V ptqdt, (3.1)

where V ptq is the PMT anode signal. These integration time windows (A, B,

and C) are indicated in figure 3.1, and their selection depends on the process to

be studied [Cooper et al., 2015]. It is usually adequate to compare the counts in

the prompt peak with those at later times. This is true for experiments involving

photo-ionisation of Ps or any type of induced quenching of Ps in the ground state

[Cooper et al., 2016], or n = 2 [Alonso et al., 2015]. For these processes the range

A-B is fixed to contain only the prompt annihilation events and is typically -10 to

30 ns for PbWO4, which is due to the decay time of the material.
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The short lived Ps component will also contribute to the prompt peak. It will

include p-Ps annihilation along with o-Ps that suffers spin exchange (see chapter 6)

or other quenching processes, such as those due to the presence of magnetic, and

or electric fields [Curry, 1973].

The data in figure 3.1 is displayed on the log scale for clarity and is the average

of 60 single-shots. The two spectra highlight the difference between two materials

in their suitability for producing o-Ps. Porous silica is often used as it produces

large fractions of o-Ps which is cooled via collisions within the material (see chapter

5).

For experiments involving the prompt destruction of Ps in excited states as a

means of detection, the later part of the spectrum will mostly contain the anni-

hilation, or reduction thereof, of o-Ps. The region B-C is typically set as 30-600

ns for these experiments when using the PbWO4 detector (50-1000 ns for LYSO).

A comparison between measurements of the excitation of n = 2 Ps followed by

prompt photoionisation is shown in figure 3.2(a) and (b). The excitation lasers

(see chapter 4) cause an increased signal during the time of the prompt peak (A-

B). This will therefore reduce the amount of delayed annihilation events at times

outside the window. Here the B parameter is selected as the approximate cross

over point between positive and negative signals in the background subtracted

trace. The selection of B is the most critical as it allows direct access to informa-

tion regarding the effect of the lasers. For experiments involving Ps with extended

lifetimes against annihilation, the B parameter is set to later times which enables

us to capture delayed annihilation events related long lived Rydberg states of Ps.

The presence of long lived atoms that are traveling through the chamber can be

determined from later annihilation caused by collisions, or a lack of signal related

to atoms which outlive the window B - C or move out of view of the detector. The

value of C is less critical and is normally selected at the limit of a measurable signal.

A (50 x 38 x 25)mm lead tungstate (PbWO4) scintillator, coupled via a 150 mm

long light guide to a PMT makes up the primary detector.
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3.1 Single shot positron annihilation lifetime spectroscopy

The light guide is a 50 mm wide acrylic rod which provides a suitable distance

between the PMT electronics and the magnetic field that surrounds the target

region. A second detector comprised of a 10 x 10 array of 4 x 4 x 20 mm LYSO

crystals is also used for SSPALS. This detector gives a higher signal to noise ratio

than the PbWO4, especially for experiments involving long lived Rydberg states

which is due to a higher light output. However, the PbWO4 detector has a far

superior time resolution, due to a shorter decay time (
r

10 ns, compared with
r

40 ns for LYSO). This provides a clearer picture of processes occurring on short

time scales such as o-Ps formation and annihilation following positron impact

with the target. This decay time is still not short enough to resolve the very short

lifetimes of positrons in dense solids, or to distinguish between the instantaneous

annihilation events and those of p-Ps decay. However, this detector is selected for

live monitoring of the experiment as any effect on Ps formation due to, for example,

an issue with the bunching, or RW compression will have a more obvious effect on

the lifetime spectrum. These effects can be hidden in the LYSO spectrum due to

the reduced time resolution. Example spectra for typical laser excitation schemes

(see chapter 4) for both detectors are shown in figure 3.2.

Figure 3.2(a) and (b) compare data for direct ionisation of Ps following excita-

tion to n = 2. The increased temporal resolution of the PbWO4 is apparent as the

distinction between the prompt peak and the events at later times is clear. Also the

reduction in annihilation γ-rays at all times after the prompt peak is more prom-

inent than that of the LYSO, where the difference is not visible in the top panel

until around 200 ns. It is therefore somewhat surprising that the LYSO still has

an increased signal to noise ratio for this process. (c) and (d) compare data for the

excitation of Ps to the n = 14 Rydberg state. Here the annihilation signal comes

much later, when the atoms crash into the chamber walls, and this is made possible

by the increased lifetimes. These processes that occur on increased timescales are

easier to see in the LYSO background subtracted spectra.
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Figure 3.2: (a):Lifetime spectrum and subsequent background subtracted trace following
photoionisation of n = 2 Ps obtained via the PbWO4 detector.(b): Data obtained
at the same time as in (a) with the LYSO detector.(c):Lifetime spectrum and
subsequent background subtracted trace following excitation from n = 2 to n
= 14.(d): Data obtained at the same time as in (c) with the LYSO detector, the
clear bump at around 500 ns shows the LYSO to perform better for long term
processes. All plots indicate the integration windows with vertical dotted lines.
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3.2 Single event counting and the use of micro channel plates

Changes in the lifetime spectrum due to the effect of a probing tool such as a

laser is quantified with the ‘Sγ parameter’. This quantity is given by,

Sγ �
fbk � fsig
fbk

, (3.2)

where fsig and fbk refer to the delayed fraction (fd , equation 3.1) when there is

a signal, and there is a no signal during a background measurement respectively.

Figure 3.2(a) (PbWO4) gives Sγ = 20 � 0.86 %, with a signal to noise ratio (SNR)

of 14. Whereas with the LYSO Sγ is lower (3 � 0.45%) but more importantly there

is an enhanced SNR = 20. The LYSO excels when comparing 3.2(c) and (d), where

the Sγ and (SNR) are -12 �0.6 % (5.5) and -30 �0.4 % (33) for PbWO4 and LYSO

respectively. The increased signal to noise ratio of the LYSO detector enables faster

acquisition times due to higher quality data with increased statistics.

3.2 Single event counting and the use of micro chan-

nel plates

For some experiments where a few atoms are registered in a location away from the

excitation region, we employ a single event counting scheme. Rydberg Ps has an

extended lifetime and this enables manipulation of the motion of these atoms via

interactions with the exaggerated electric dipole moments (equation 1.3). Atoms

that are guided with electric fields are recorded using a threshold triggering system.

Guided atoms can be detected with a scintillator and PMT, where a registered event

will exceed set threshold conditions related to the recorded voltage and time width

of the recorded signals. The recording window is associated with the flight time

of the atoms. An MCP is also used for registering events associated with guided

atoms.

An MCP consists of several million hollow microchannels [Wiza, 1979]. These

channels are typically made of leaded glass and are packed together in an array.
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Detection and measurement of Positronium

Each channel opening is typically � 10 µm in diameter. If a particle strikes the

interior surface of one of the channels with enough kinetic energy a number of

secondary electrons will be liberated from the material. These electrons will exper-

ience subsequent impact within the channel and likewise produce more secondary

electrons inducing an avalanche effect. A large current amplification can take place

if a suitable electric field is applied between the front and back of the plate. This is

normally achieved with metal rings that hold the plate (or plates for higher gain) in

compression. The channels are coated with a conducting material, so that the elec-

tric field may be applied along the channels. The MCP is stacked onto a suitable

anode, which may be a metal plate, a phosphor coated screen for position sens-

itive imaging, or an array of electrically isolated wires also for position sensitive

detection.

Two types of MCP were used in this study and their differences consist of the

level of maximum gain and the choice of anode material. For imaging the positron

beam (see chapter 2) a single plate MCP and phosphor screen assembly was used.

Charged particle detection using an MCP like this is straightforward as the front

plate can be biased to accelerate the particles toward the detector. The amplified

electron current is then accelerated toward the screen. Upon impact, electron-

hole pairs are excited and they de-excite through emission of photons. The phos-

phorescent material in this detector is P43 (GdO2S:Tb). Visible light peaked at

a wavelength of 545 nm is emitted from the screen and is imaged using a digital

CCD camera programmed to expose during the decay time of the phosphor glow

which is � 650 µs.

A double plate MCP was used to detect individual Ps atoms following their excit-

ation into Rydberg-Stark states and electrostatic guiding away from the excitation

region (see chapter 4). This detector is shown in figure 3.3.

The two plates were arranged as a chevron to enable secondary electron trans-

port through the detector. With the two plates the minimum gain of this detector

is increased to � 108, from � 104. Which is essential for the detection of neutral

atoms of a relatively low internal energy. The anode in this case is a solid metal
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3.3 Hardware control

Figure 3.3: Left: Photograph of the two-plate high gain MCP with additional electrodes for
the purpose of electric field control. Right: The detector in place for receiving
guided Ps atoms.

plate, the detector is therefore used for time-of-flight measurements as avalanche

currents induced by atoms striking the detector are monitored by an oscilloscope.

MCPs in general have fast response times of less than 1 ns.

Similar timing measurements can also be performed using the phosphor screen

anode. In both cases the anode signal is sent to the oscilloscope via a high pass

filter. Example time-of-flight data for guided atoms is shown in figure 3.4.

3.3 Hardware control

We have utilised some of the vast capabilities of LabVIEW to create a program-

mable and automated system which has the ability to run experiments over large

parameter spaces whilst monitoring, and reacting to environmental changes. The

‘Oskar’ (Orchestrate Sequences Keep Attribute Record) is a collection of LabVIEW

virtual instruments (vi) designed to systematically control hardware and acquire

and organise data which was written by Dr Adam Deller. It was developed, tested

and implemented during the course of this study and is available for download

via Github (https://github.com/PositroniumSpectroscopy). Sequences of data col-
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Figure 3.4: (a):A smoothed single oscilloscope trace following positronium impact with an
MCP. Here four events are detected following excitation to low field seeking sub
states of n = 14 and electrostatic guiding to the detector with a quadrupole. The
vertical blue lines indicate the position of a registered event. The large feature
at the start is due to rf pickup from HV solid state switches and is ignored. (b)
The average rate of triggers received at the MCP as a function of time compared
to a background taken with the Rydberg Ps excitation laser off resonance.

lection over varied parameter spaces are conducted by one master program. The

sequencer vi is designed to read a file which is essentially an experiment script. The

file contains lines of experimental variables such as laser wavelength, the applied

voltage to an electrode, or the time of a trigger pulse. This vi does not control hard-

ware, it merely sends the required setting to a variable vi (VAR) which has control

of a specific device. For example, the purpose of the script may be to vary the

frequency and amplitude of the sinusoidal waveform for the purpose of rotating

wall optimisation. The sequencer does not know what these parameters are and

the naming of them is arbitrary. The sequencer sends out a message to all running

VAR programs saying ‘The variables related to the rotating wall are to be set in

this way’. The sequencer will then wait for the relevant VAR program to respond

with a message that the values have been set. In the rotating wall example, the

VAR vi will be the program controlling the arbitrary waveform generator. Some

VAR programs are required to run on a loop which reads the value back from the

hardware after it has been set and only gives the OK signal to the sequencer once
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3.3 Hardware control

a condition has been met. This is to account for slow processes such as voltage

ramping times. Once all the VAR programs have completed their tasks for a given

line the sequencer will then wait in acquisition mode for a defined period before

moving on to the next line. Each line has a sequence ID which is time stamped. If

there are other programs running which are monitoring equipment such as oscillo-

scopes, cameras or other sensors, the data from these programs will be compiled

into a single array which contains all of the relevant information from a sequence

such as the line number, the parameters which were set, and the number of repeats.

The data files are then processed separately offline where averaging over repeats,

SSPALS analysis, counting, or image processing and plotting can be performed. In

the case of the above example concerning the rotating wall, one might wish to

average oscilloscope waveforms and plot the mean pk-pk voltage of annihilation

γ-ray signals against the varying sinusoidal values as this gives an insight into

the efficiency of the trap under the changing conditions. An example of this is

shown in figure 2.5. This particular sequence was run continuously for 12 hours, it

contained 1021 lines which covered the broad, two dimensional parameter space.
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Chapter 4

Laser Spectroscopy of Positronium

Progress in the field of laser spectroscopy of Ps has been limited in the past and

this is mainly due to the availability of suitable positron sources, and hence Ps

atoms. Some experiments were done using magnetic bottle traps [Chu et al., 1984]

or intrinsically pulsed linac based beams [Howell et al., 1985; Ziock et al., 1990a].

The development of the Surko buffer gas trap [Danielson et al., 2015; Surko et al.,
1989] (See chapter 2) solved the problem of limited positrons but the field still

remains under-explored. Laser excitation of Ps holds many benefits and it allows

us to measure the Ps kinetic energy via Doppler spectroscopy. Excitation with laser

pulses also allows us to extend the Ps lifetimes against annihilation, which provides

time to perform advanced experiments.
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4.1 Laser system

The laser system is comprised of one solid state laser, an Nd:YAG with a funda-

mental wavelength of 1064 nm, and two dye lasers which are used to produce

tunable frequency pulses for Ps laser spectroscopy experiments. One dye laser is

pumped with the third harmonic of the Nd:YAG (λ = 355 nm up to 160 mJ/pulse).

This laser is operated with courmarin 102 dye which can produce light between

� 455 and 495 nm in wavelength with the peak efficiency at � 475 nm. Three

SF10 glass prisms make up the dispersive element inside the resonator. The laser

is tuned to produce pulses near λ = 486 nm which are frequency doubled using a

Barium Borate (BBO) crystal. The output of this laser comprises of
r

6 ns (FWHM)

pulses of UV light with λ
r

240 - 245 nm and a ∆ν � 85 GHz frequency bandwidth.

This intentionally wide bandwidth provides some spectral overlap with Doppler

broadened Ps. The doubling efficiency is controlled by varying the phase-matching

angle of the BBO crystal. This enables regulation of the output energy as the laser

wavelength is varied over the 1s–2p transition in Ps. This laser outputs fluences up

to � 2 mJ cm�2.

Residual radiation from the Nd:YAG second harmonic (λ = 532 nm) can be

used to photoionise 2p Ps via resonance enhanced multi-photon ionisation (REMPI)

[Demtröder, 2003], or in the case of semiconductor targets, enhance the production

of ground state Ps (see chapter 5). 532 nm pulses can also be used to pump a second

pulsed dye laser operated with styryl-8 dye. The fundamental output of this laser

gives up to 15 mJ cm�2 of IR light in the range 730-750 nm and it is used to drive

2p-nd transitions in Ps.

The UV radiation and the secondary pulses (532 nm or IR) cross paths in front of,

or enter a Ps converter target, for studies of vacuum Ps or confined Ps respectively.

A schematic of the pulsed laser system is shown in figure 4.1
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Figure 4.1: Laser system schematic with harmonic generation (HG) and harmonic separa-
tion (HS) units. Either 730-750 nm or residual 532 nm laser pulses can be sent
the the vacuum chamber for interaction with UV excited Ps. The UV and IR
pulses are temporally overlapped at the chamber. When using 532 nm pulses,
the path length is extended to match the UV with an optical delay line.
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4.1.1 Laser timing

A system which is suitable for laser spectroscopy of Ps has been developed. We have

achieved this goal by sending suitably timed laser pulses to the vacuum chamber,

where o-Ps is confined within a sample or emitted into vacuum. The orientation of

the target with respect to the positron beam and laser pulses for a typical experi-

ment is shown in figure 4.2.

There is a suitable delay between the firing of the Nd:YAG Q-switch and the

trap opening. This is done to allow a transit time for positrons from the trap to the

target via the buncher. The laser arrival time is tuned to achieve the largest laser

interaction signal, as measured with SSPALS (see chapter 3) an example is shown

for a 1s-2p-ionisation scheme in figure 4.3.

Figure 4.2: (a) Positronium-laser interaction chamber. Two coils surround the chamber
producing a magnetic field at the target of

r

13 mT. The target is raised out of
view of the positron beam whilst performing trap diagnostics using the MCP.
(b) Zoomed target mount. The target is sometimes placed behind a tungsten
grid which is 97% transmissive. Ps atoms can be produced and reflected back
into vacuum where they can interact with the laser pulses. The incoming posi-
tron pulse has a time width comparable to that of the lasers, which ensures
good temporal overlap between the lasers and the emitted Ps. The 2 mm wide
alignment holes at the bottom of the mount allow measurement of the posi-
tron pulse size whilst imaging the positrons arriving at the MCP see chapter 2
[Cooper et al., 2015].
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4.1 Laser system

Figure 4.3: (a):Variation of the laser trigger time relative to positron release and the effect
on the delayed fraction (fd). The time axis has been scaled for clarity. (b):
Plastic scintillator response showing an approximately 20 ns delay between the
positron and laser arrival at the target. This was a suitable delay for the photo-
ionisation of positronium as shown by the lowest value of fd in (a) but this time
will vary depending on the type of target and the laser position [Cooper et al.,
2015].

In figure 4.3, the laser initially arrives at the target chamber before the positrons

and is therefore too early and this provides a background measurement. There is a

constant delay between the flashlamp and Q-switch and the trigger times for both of

these are moved together to change the arrival time of the lasers at the chamber. The

annihilation γ-ray and laser pulse timing is monitored with a plastic scintillation

detector or Si photo diode detector. If using a plastic scintillator, it is positioned

such that it is in view of the annihilation radiation from the target in addition to

diffuse reflected light from the laser pulses, which enter the scintillator through a

small pinhole. The anode signal of the PMT coupled to the plastic scintillator is

recorded with a digital storage oscilloscope. Figure 4.3(b) shows a delay of � 20

ns between the positron and laser arrival time. This delay was optimum for photo-

ionisation of Ps emitted into vacuum as it yielded the biggest interaction signal, Sγ ,

and signal-to-noise ratio. The optimal trigger time will vary depending on the type

of target (see chapter 5), and the laser position with respect to the target. There is

also a dependence on the implantation energy of the positrons which is related to

the speed of the emitted positronium and its emission time.
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4.1.2 Doppler broadened 1s-2p transition

Due to the very low mass of Ps, there is large Doppler broadening of atomic trans-

itions at the typical Ps kinetic energies produced in the lab. This can affect the

precision of a spectroscopic measurement. Doppler broadening of atomic trans-

itions in Ps make laser spectroscopy challenging. This is due to laser bandwidths

being typically much narrower than the transition that one is attempting to excite.

There is a compromise between signal strength and resolution. For example, the

243 nm Lyman-α transition in Ps has a natural linewidth of 50 MHz is drastically

increased to � 460 GHz via Doppler broadening at room temperature. Excitation

of the the Lyman-α transition in Ps with a narrowband laser at room temperature

would be very difficult due to minimal overlap in frequency.

Elimination of some issues associated with Doppler broadening can be achieved

following the two-photon, Doppler-free technique which was the first observation

of Ps laser excitation by Chu et al. [1984]. The 13s1-23s1 interval was measured

using two photons which reduced Doppler effects to the second order. Another ap-

proach is to increase the frequency overlap of a broadened transition. It is possible

to obtain solid-state UV lasers with large (� 200 GHz) bandwidths [Deller et al.,
2015a]. Alternatively, prisms can be used [Cooper et al., 2015; Ziock et al., 1990b]

or high-order gratings [Cassidy et al., 2010a] as dispersive media which produce

light from dye lasers with bandwidths up to 100 GHz.

A single-photon, Doppler broadened Lyman-α 1s-2p transition was first achieved

by Ziock et al. [1990b], who by using a frequency doubled, pulsed dye laser were

able to saturate the 13s�23p transition in Ps with a laser linewidth � 350 GHz.

We have also saturated the 243 nm, 13s�23p transition in Ps with the frequency

doubled, wide bandwidth (∆ν � 85 GHz) UV laser with pulse fluences above 500

µJ cm�2. The saturation curve for the transition at resonance is shown in figure

4.4(b). Detection of the 2p states excited by the laser is achieved by their immediate

ionisation with the residual 532 nm pulses at � 25 mJ cm�2.
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Figure 4.4: (a) 1s-2p-ionisation via a two-step Doppler broadened scheme. 243 nm light
drives Ps from the ground state to n = 2, then 532 nm light drives the Ps to
the ionisation band where it is detected via changes in the SSPALS lifetime
spectrum. IR pulses shorter than � 730 nm can also drive 2p states to the
ionisation band. (b) Measured intensity of the 1s-2p transition in positronium,
showing saturation above � 500 µJ cm �2 of UV power. (c) 1s-2p line shape
for Ps emitted into vacuum following the implantation of 5 keV positrons into
porous silica.
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Without the ionisation laser and in the absence of magnetic quenching, the 2p

states would decay back to the ground state (τ � 3.2 ns) and this process would go

unnoticed in the lifetime spectrum.

Changes in the lifetime spectrum are quantified using equation 3.2, as explained

in chapter 3. Figure 4.4 (c) shows Sγ as a function of the UV wavelength with �

700 µ J cm�2 pulses. This enables a measurement of the spread in Ps velocities

along the direction of propagation of the lasers. A Gaussian function has been

fitted to the data which is of the form A expr�pλ�λ0q
2{p2σ2qs . The rms speed in

the direction parallel to the laser can be estimated with the assumption that the

profile is dominated by non-relativistic Doppler broadening where

vRMS‖ �
cσ
λ0
. (4.1)

The line shape in figure 4.4(c) was measured following the implantation of 5

keV positrons into porous silica. vRMS‖ is dependent on the type of Ps converter

used and the energy of the incoming positron beam (see chapter 5). With the target

and laser orientation as shown in figure 4.2, the line is centered at 243.03 � 0.02

nm and has σ = 0.089 � 0.002 nm corresponding to a vRMS‖ of � 110 km s�1 in the

direction of the laser, which is representative of the slowest Ps produced during

the course of this study.

4.2 Rydberg positronium

Many experiments can be done with Ps atoms in both the 1s and 2p states as shown

in the following chapters. However, there is a great desire to increase the lifetime

of Ps as this enables experimentation over longer timescales. For example, an

ensemble of long lived Rydberg states of Ps would be useful for testing gravitational

interactions with antiparticles [Cassidy and Hogan, 2014; Mills and Leventhal,

2002]. Antimatter is assumed to fall downwards, towards earth [Jentschura, 2013],

however this has not yet been verified experimentally and any discrepancy between
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4.2 Rydberg positronium

the motion of matter and antimatter particles in a gravitational field would spark

intense interest as it would challenge many accepted notions in modern physics.

Rydberg Positronium was first observed by Ziock et al. [1990a] who achieved n

= 14 and n = 15 by first exciting Ps to n = 2 then optically pumping these states to

higher n with an infrared (IR) laser. The signal to noise ratio of this method was

later improved by Cassidy et al. [2012b]. The efficient production of long lived Ps

atoms has benefits for many experiments including higher resolution time-of-flight

[Jones et al., 2015], separation of atoms from the point of creation and excitation,

and Doppler correction methods [Jones et al., 2014].

We have adopted the same technique, in that we initiate the 1s-2p transition

with the pulsed UV laser (λ = 243 nm), and follow this with an excitation to Ry-

dberg states with a pulsed IR laser (λ = 730 - 750 nm). The Ps energy eigenvalues

can be calculated with precision by using the Bethe-Salpeter equation [Salpeter

and Bethe, 1951]. However, an adequate approximation can be made using the

Hydrogenic expression

En ��
µq4

e

8h2ε2
0

1
n2 , (4.2)

where µ is the reduced mass given by equation 1.1 and this enables the equation

above to be reduced to

EP s ��
6.8eV
n2 , (4.3)

which is approximately half of the value for Hydrogen [Ley, 2002]. The required

energy to complete the transition from n = 2 to a higher n state can therefore be

estimated via the energy interval between the two states. For example, the interval

between n = 2 and n = 12 is approximately 1.65 eV. This translates to an IR

wavelength of around 750 nm as shown in figure 4.5.

This two-step process has led us to the population of high n states in Ps from

n = 9 - 30. We cannot resolve states above n = 30 due to Doppler broadening and
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Figure 4.5: (a) Population of the states n = 9 - 30 following a two step laser excitation
process. The data for n = 17 are expanded in (b) and n ¥ 19 is shown in (c) The
negative S values indicate long lived Rydberg positronium, where the positive
values indicate field ionisation following exit from the grid. The error bars, not
shown in (a) or (c), are of the same size as those shown in (b). Values of n are
shown in the top axes. [Wall et al., 2015].
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the large laser bandwidth. These Rydberg atoms were prepared in a near zero

applied electric field which is achieved using the grid shown in figure 4.2. Here the

background is defined when the UV laser is on resonance with the 1s-2p transition

(243 nm), but the IR laser is tuned off resonance, at all points between n = 10 and

n = 11 (755 - 758.5 nm). The Sγ value is therefore a measure of the second step in

the process, i.e the 2p states which are elevated to higher n levels.

There is some production of Rydberg states from broadband light, emitted

from amplified spontaneous emission (ASE) this is the reason for the change in

the background value between n = 9 and 10. At these wavelengths, we approach

the limit of the Styryl-8 dye gain curve which is peaked at � 740 nm and drops to

approximately half of the maximum efficiency at 720 and 765 nm. In this region the

optical cavity is off resonance with the requested frequency, and a spontaneously

emitted photon that is on resonance with the cavity receives the most gain from

the active medium, causing an amplification of a broad frequency range of photons.

The negative Sγ parameter for the n = 9 - 16 states represent a reduction in signal

at earlier times. These states are not annihilating within the lifetime spectrum time

windows A-B as explained in chapter 3. The effect of the laser is the production

of Ps states which have extended lifetimes where some are detected at later times,

and some move out of view of the detectors entirely. For the states higher than n =

17, the Sγ parameter is positive. These states are annihilating at earlier times due

to ionisation from the electric field produced after the grid (see figure 4.2). The

applied field that is required to ionise Rydberg states scales with n�4 [Gallagher,

1994]. The n = 17 line is both positive and negative, and is serendipitously split

approximately in the middle. This is due to polarisation of the Ps atoms by the

electric field, resulting in a partial splitting of states with both positive and negative

Stark shifts [Wall et al., 2015]. Basic control of this effect is shown in figure 4.6.

This was achieved by altering the magnitude of the field seen by atoms which

are transmitted through the grid. The small electric field in the excitation region

remained by keeping the potential difference between the two constant. A small,

constant potential difference between the target and the grid was applied, creating

a field of 63 V cm�1. This field, along with motional Stark effects cause polarisation
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of the Rydberg atoms leading to weak Stark splitting [Gallagher, 1994].

Figure 4.6: n = 18 peak measured with a constant 63 V/cm electric field in the excitation
region, and a varying field outside the the grid. The vertical line indicates the
predicted position of the n = 18 peak. Negative Sγ values indicate atoms which
are passing though the grid, whilst positive Sγ values indicate atoms in Stark
states which are field ionised [Wall et al., 2015].

The longer wavelength components have negative Stark shifts, causing ionisa-

tion in weaker fields [Damburg and Kolosov, 1979]. Figure 4.6 shows that the sup-

pression in transmission through the grid occurs first for the longer wavelength,

negatively shifted states. For the outermost states, the ionisation field is approxim-

ately equal to the classical ionisation field [Gallagher, 1994],

Fion �
2RP shc
eaP s9n4 , (4.4)

where RP s is the Rydberg constant for Ps and is equal to 0.5R8, and aP s is the

Bohr radius of Ps and is equal to 2a0. Equation 4.4 suggests that for Ps states trans-

mitted through the grid which have negative Stark shifts at n = 18, the ionisation

field is 1360 V/cm. The data in figure 4.6 shows that only the outermost, longer

wavelength states are ionised by the field (positive Sγ ).

For the outermost states with positive shifts, ionisation occurs at approximately

2Fion, which suggests a field of 2721 V cm�2 should completely inhibit transmission
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4.2 Rydberg positronium

of all stark states within n = 18, we see that practically all states within n = 18 are

ionised by the field (positive Sγ ) at a value of 1985 V/cm. This is lower than 2Fion
and this may be attributed to n-mixing of states with higher principle quantum

number in the combined magnetic and inhomogeneous electric fields near the grid

[Wall et al., 2015].

We have also been able to resolve individual Stark states in the excitation region

by increasing the electric fields in the excitation region up to 2 kV cm�1, figure

4.7 shows examples of individual Stark-state resolution within the n = 11 manifold.

This work, in addition to the data presented in figure 4.6, represent the first steps

towards the development of atom optics for Ps for which Ps Stark-state selection is

a useful prerequisite.
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Figure 4.7: Resolution of individual Stark states of the positronium n = 11 manifold. This
data was recorded in various electric fields ranging from 0 to 2.0 kV/cm. Drawn
from Cooper et al. [2015]
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4.2 Rydberg positronium

Rydberg-Stark states with k � 0 have large electric dipole moments and with

the application of inhomogeneous electric fields, large forces can be applied to

these atoms [Gallagher, 1994; Hogan et al., 2012]. By tuning the electric field in

the excitation region, long lived Rydberg-Stark states of Ps can be produced which

can in turn be spatially manipulated using guiding fields.

n ¡ 2 Ps states with non zero angular momentum quantum numbers (l � 0)

[Alekseev, 1958] have suppressed annihilation rates. Rydberg Ps is therefore

primarily described by its fluorescence lifetimes. The fluorescence lifetimes for

n ¡ 10 is typically of the order of µs [Deller et al., 2016b]. This is ideal for the

transport of atoms, which typically have speeds less than 100 km s�1 over a few

meters.

4.2.1 Guiding of low field seeking states

Following the production of Rydberg-Stark states of Ps and the separation of low,

and high-field seeking states, we have demonstrated guiding of the low-field seek-

ing states using a quadrupole guide which is shown in figure 4.8. These techniques

and similar have been used on regular atoms for some time [Wieman et al., 1999].

Employing these techniques for use on systems involving antiparticles has natur-

ally been limited due to the difficulties associated with the production of such

atoms. However, the recent advances in positron moderation, trapping, cooling,

and manipulation are enabling progress.

Rydberg-Stark states of Ps were prepared following the two-colour two-photon

excitation scheme outlined in the previous section. Initial experiments employed

a 670 V cm�1 field in order to separate the n = 10 Rydberg-Stark states (see figure

4.7 for a demonstration of the similar separation observed for n = 11). Whilst this

field is not strong enough to individually resolve Stark-states, it is however suitable

for the optical selection of either high-field-seeking (hfs) or low-field-seeking (lfs)

states. Selection of lfs or hfs is then achieved by simply de-tuning the IR laser to a

shorter or longer wavelength component of the Stark-broadened line.
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Figure 4.8: (a) Schematic layout of the quadrupole guide arrangement, indicating the Ps
excitation region, and the gamma-ray detectors A, B, and C. (b) Expanded view
of the excitation region, and (c) a contour plot of the electric field strength inside
the quadrupole with 1 kV applied. (d) and (e) show background subtracted TOF
data recorded by detectors B and C with 1 kV applied to the guide electrodes,
for IR laser wavelengths corresponding to (d) outer lfs (k � 6) and (b) outer hfs
(k � �6) states of n = 10. [Deller et al., 2016a]
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Initial experiments were done using a 0.4 m quadrupole electrode positioned to

accept Ps atoms made in a reflection geometry following their exit of the excitation

region. As a result of the geometry shown in figure 4.8, the bias to the quadrupole

rods was applied � 150 ns after the positron beam had passed through it using

a solid-state high-voltage switch. This was found as a suitable time to allow the

positrons to pass through without deflection, for Ps to then be made in the sample

and be emitted into vacuum, and finally be prepared into a Rydberg-Stark state

and travel back towards the guide. The optimum time for pulsing the guiding field

on was found in a similar way to the laser delay scan shown in figure 4.3. In this

case the effects of pulsing the rods on whilst the positrons are still in the vicinity

of the rods can be monitored via SSPALS at the target.

This guide enabled us to show that low-field-seeking Rydberg-stark-states of

the n = 10 manifold can be guided by creating an inhomogeneous electric field

along the flight path of the atoms [Deller et al., 2016a]. By pulsing on potentials at

the opposite poles of the guide, we are able to create a potential minimum at the

centre. The electric field therefore increases near the rods which applies a force

via the large electric dipole moment of the Ps. The excited states are produced

predominantly with azimuthal quantum number ml = 1, and even values of k,

which is due to the polarisation of the excitation lasers [Wall et al., 2015]. The lfs

states are thus confined along the potential minima which runs along the centre

of the guide manipulating the direction of travel to the forward direction. For

the shifted IR wavelength of 759.02 nm it is expected that states with k � -6 (610

Debye) are being produced [Hogan, 2013].

Detection of guided atoms was done via a single event triggering method us-

ing LYSO scintillators and PMTs. The technique is explained in chapter 3. This

guide opens up the opportunity to perform further experimentation on atoms that

have been transported away from the excitation region. This is advantageous if

such experiments require different electric fields to the excitation region, or to be

performed away from the potential interference from laser pulses. However, the

atoms are transported in reflection along the positron beam axis which presents
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some limitations on further experiments. These limitations were initially overcome

by bending the positron beam off axis for Rydberg Ps lifetime studies [Deller et al.,
2016b]. Adding a 45o bend to the guide also provided a method of transporting

Rydberg-Stark states of Ps to an area away from both the Ps excitation region, and

the positron beam axis [Alonso et al., 2017]. The layout of this guide is shown in

figure 4.9.

Figure 4.9: (a) Schematic representation of the experimental apparatus containing the
curved guide. The positions of the five γ-ray detectors are indicated where
D1 and D2 are used to monitor Ps atoms in or near the excitation region via
lifetime spectroscopy, and D3, D4, and D5 are used to generate single-event
TOF spectra. [Alonso et al., 2017].

The bend adds a velocity selective component where atoms of a mean speed

(kinetic energy) of � 180 km s�1 (� 185 meV) enter the guide following implant-

ation of positrons into a porous insulator (see chapter 5). The atoms selected at

the bend have a longitudinal velocity of � 90 km s�1 (� 45 meV). These features
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can be used to perform experiments in which guided Ps atoms interact with other

species as explained in the next section.

A demonstration of the excitation and guiding of n = 14 lfs of Ps is shown in

4.10. An MCP was added to the end of the curved guide to aid detection following

the methodology outlined in chapter 3

Figure 4.10: (a) Line scan of n = 15 excited in an electric field of � 330 V cm �1. The
corresponding trigger rate as measured on the MCP at the end of the guide
is also shown. The excess trigger rate is seen when λ � 741.8 nm showing
the optimum excitation wavelength for low field seeking state production and
guiding. (b) corresponding TOF spectrum for atoms that were successfully
guided around the 45o bend. The background subtracted count rate is 1.12 �
0.02 Hz.

59



Laser Spectroscopy of Positronium

Here the applied electric field is � 330 V cm �1 which is suitable to optically

select a subset of lfs states. The resulting trigger rate at the MCP is also shown

which indicates the optimum detuned wavelength for producing lfs states that are

accepted by the guide.

4.2.2 Crossed-beam charge-exchange scattering

Using the techniques for the electrostatic guiding of lfs Rydberg-Stark states of Ps

outlined in the previous section, a charge exchange scattering interaction experi-

ment was attempted. Collisions between Rydberg atoms and neutral species have

been studied for decades, for example Hotop and Niehaus [1968]. The curved quad-

rupole guide was extended to accommodate an additional chamber which housed

the MCP and facilitated the crossing of the Ps beam with an ion source. Argon ions

were produced with a miniature ion sputtering gun, which produces a uniform,

low density, inert gas ion beam with a diameter of 10mm. The ion beam was ac-

celerated and focused with electrostatic lenses. The lens region was differentially

pumped to reduce the Argon gas pressure in the scattering region.

The objective of this experiment was to observe the following reaction between

Rydberg Ps, (Ps�) and a positive ion namely,

P s��Ar�Ñ Ar � e�, (4.5)

or the equivalent for He� as two gasses were available for ion production. In

this reaction, the ion is neutralised by the Ps� electron leaving a free positron. The

e� should be distinguishable from the Ps� as it can be accelerated into the front

of the MCP producing a larger secondary electron current than the Ps�. Charge

exchange processes involving Ps�, in particular the charge conjugate of the reaction

producing Hydrogen [Merrison et al., 1997],

P s�� pÑH � e� (4.6)

60



4.2 Rydberg positronium

have long been seen as a direct route towards efficient antihydrogen production

[Darewych, 1987; Deutch et al., 1988; Ermolaev et al., 1987; Hessels et al., 1998;

Storry et al., 2004].

For n = 14 positronium with a velocity of � 90 km s�1 the cross section for

the reaction above involving a stationary proton is expected to be of the order of

10�10cm2 [Charlton, 1990; Krasnický et al., 2016]. However, for a crossed beam

experiment involving a diffuse ion beam, this will be an overestimate but it is

expected that the adjusted cross section will still be very large. This assumption is

made on the basis that the attenuation of the Ps� exciting the guide can be observed

in the presence of diffuse background electrons which originate at the ion source

as shown in figure 4.11.

Figure 4.11: Attenuation of Rydberg Ps by an electron gas as seen on an MCP. The PMT
detectors are indifferent to the interaction which can be suppressed with a
permanent magnet. This confirms that Ps guiding is still active in the presence
of the electron gas.

61



Laser Spectroscopy of Positronium

For a maximised ion current, the ion gun filament emission current is around

20 mA. However, this produces a large amount of background electrons which

fully attenuated the guided Ps�. The data in figure 4.11 was recorded with a low

emission current of 1 mA which produces a weak ion beam as measured with a

Faraday cup. Here the Argon gas inlet is closed which suppresses ion production

and allows only the background electrons to enter the scattering region. Figure 3.3

shows the end of the guide, field suppression plates, and double plate MCP. The

interaction region is 2.5 cm across. A simplified schematic is shown in figure 4.12.

Figure 4.12: Scattering region following the guide exit. Ions and electrons are produced on
the right hand side of the MCP. The inhomogeneous electric field generated
by the rods is terminated by a grounded aperture. A second aperture that sits
in front of the MCP allows control of the field at the location of the interaction.
Three scintillation detectors with PMTs are situated outside of the chamber,
the counts of which are summed.

With the background electrons present an attenuation of Ps� is observed at the

MCP. The summed PMT counts remain constant with and without the filament on.

This suggests that the Ps� is being guided successfully regardless of the presence

of charges and that annihilation is occurring in a similar location to the MCP. In-

teractions involving Ps� and electrons can take several forms including ionisation

or breakup, ground state Ps production via electron exchange, or production of the
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Ps negative ion, Ps�. The relevant cross sections for interactions with electrons for

ground state Ps are given in reference [Ward et al., 1987]. However, it is not trivial

to determine which processes are taking place. Detection of reaction products can

give insight into the scattering mechanism, for example, positron detection could

indicate Ps ionisation is taking place. However, there are difficulties associated

with this detection scheme as an applied electric field designed to direct positron

reaction products to the detector may affect the electron trajectories which could

in turn prevent the reaction from taking place. Background electron suppression

would be essential in an experiment in which heavy ions are used as a scattering

target. This may be achieved with electric and/or magnetic fields. The reaction

could also be facilitated within an ion trap [Willitsch et al., 2008].
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Chapter 5

Positronium production and cooling

For some experiments it is advantageous to produce a large amount of cold Ps

atoms, such as those concerned with the production of antihydrogen. Many differ-

ent materials have been shown to produce Ps. From the early work of Canter and

Mills who produced Ps on the surfaces of various solid targets [Canter et al., 1974;

Mills, 1978], to the more recent, observation of formation in SiO2 [Nagashima et al.,
1998], silica aerogel [Nagashima et al., 1995], mesoporous thin films [Liszkay et al.,
2008b], and positively doped silicon [Cassidy et al., 2011b]. Porous materials are

often selected as the target material for achieving a large Ps production fraction.

Schultz and Lynn [1988], explain the theory of positron interactions with solids

prior to positronium production. Upon impact between the beam and the target,

several possibilities for interactions arise, including implantation into the material

or back scattering away from it. If a positron is implanted into an insulator, it can

diffuse through the material, losing energy through inelastic collisions. A diffusing

positron will continue to lose energy until it annihilates, reaches the surface, forms

Ps, or gets trapped in a lattice defect site where it will eventually annihilate. For

metals and semiconductors, Ps production is not possible in the bulk due to the

high electron density which screens the positron charge [Schultz and Lynn, 1988].

However, if a positron diffuses to the surface, the formation of Ps can occur via a

number of processes.
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5.1 Positronium formation in insulators

An insulator will allow Ps formation within the bulk of the material which can

subsequently diffuse to the surface and be released into the vacuum. In any case

the positron energy E� must exceed the ionisation energy of the medium Ei , minus

the Ps binding energy

E� ¥ Ei �EP s (5.1)

to form Ps. Ps atoms can be produced in solid insulators following positron

implantation into various materials [Canter et al., 1974; Mills, 1979; Mills et al.,
1991; Paulin and Ambrosino, 1968; Rich, 1981; Sferlazzo et al., 1988]. In many

of these materials Ps is formed by interactions with the electrons produced by

positron implantation [Tao, 1974]. The lifetime for Ps atoms formed in the bulk

of many such materials is sub-nanosecond [Gidley et al., 1999]. However, if such

materials have open spaces in the form of pores, Ps atoms that are formed in their

vicinity can diffuse into them enabling extended Ps lifetimes.

5.1.1 SiO2

Ps atoms can be produced efficiently when positrons interact with fine powders of

various oxides [Paulin and Ambrosino, 1968]. The Ps atoms diffuse to the grain

surfaces [Brandt and Paulin, 1968] where they are emitted into vacuum with a

kinetic energy related to the Ps binding energy, the band-gap energy, and the work

functions of the electron and positron [Nagashima et al., 1998]. In general, SiO2

emits Ps into vacuum with approximately 1 eV of energy. Higher emission energies

can be observed when surface-based formation processes are present [Sferlazzo

et al., 1987] as the initial Ps energy is reduced following collisions and this is

absent in a surface based formation. Ps undergoes many hundreds of thousand

collisions due to the typical Ps speed and the sample geometry [Ford et al., 1976].

However, complete thermalisation within powdered materials requires very deep
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5.1 Positronium formation in insulators

implantation [Mills et al., 1989; Nagashima et al., 1995; Tianbao et al., 1987]. It

could be possible to create a powder blend that contains a heavy metal such as Pb

for the purpose of increased collisional cooling and thermalisation, but this will be

at the cost of an increased annihilation rate.

An increased thermalisation efficiency is however observed with variations of

mesoporous SiO2 assembled as thin films [Liszkay et al., 2008b]. General explana-

tions on the synthesis of such materials which undergo evaporation-induced self-

assembly are given by [Brinker et al., 1999; Grosso et al., 2004]. SiO2 is common but

a variety of other materials can be used [Fischer et al., 2005]. The use and study of

mesoporous structures for Ps production has become increasingly important over

the years. The fact the such materials facilitate the cooling and confinement of Ps

has enabled measurements involving interactions between Ps atoms and the form-

ation of the Ps2 molecule [Cassidy and Mills, 2007c]. Figure 5.1 shows the possible

fate of positrons implanted into mesoporous SiO2, which are direct annihilation or

Ps formation and annihilation in the p-Ps or o-Ps states, it is possible for the later

to diffuse to the surface and be emitted into vacuum.

Ps

e+

Ps

e+

e+

γ

γ γ

γ γ

γ

γ

Figure 5.1: Possible outcomes following the implantation of positrons into mesoporous
SiO2 films. These include direct pick-off annihilation, Ps production, diffusion
and escape into vacuum, or Ps production, diffusion and eventual decay inside
a pore.
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Mesoporous SiO2 can be synthesised with various properties such as average

pore size, overall porosity, and surface area. These materials provide a source of

efficient, collisionally cooled Ps [Liszkay et al., 2008a,b]. However, if the mean

pore size is comparable to the Ps de-Broglie wavelength the Ps thermalisation is

restricted. The Ps atoms become confined within the voids with an energy that

depends on the size of the cavity. The Ps will therefore be emitted into vacuum

with a non-thermal kinetic energy which is defined by quantum mechanical con-

finement [Cassidy et al., 2010a]. Crivelli et al. [2010] measured Ps with 48 � 5 meV

energy emitted from a sample with a mean pore size of 4.1 nm, whereas a stronger

confinement effect was observed within smaller pores (3.3 nm) as that emitted Ps

with 73 � 5 meV.

The SiO2 samples used throughout this study were synthesised by Laszlo Liszkay

at CEA Saclay France. The samples were made using the sol-gel method [Hench

and West, 1990], with TEOS (tetraethyl orthosilicate) as a precursor to silicon di-

oxide. The triblock copolymer Pluronic® F-127 (poloxamer 407) was used as a

template, following the method of Imperor-Clerc et al. [2000]. The porogen ra-

tio was however twice as high (0.016 instead of 0.08 molar ratio). The F-127 and

TEOS was mixed with ethanol, deionised water and HCl in a molar composition of

0.016:1:8:8:5 �10�5. The mixture was stirred at room temperature for 90 minutes,

then deposited on a p-type Si single crystal wafer via 3000 rpm spin coating. The

porogen was removed from by heating the samples to 723 K for 15 minutes in air.

Porous voids are left behind as the porogen forms spherical micelles which undergo

thermal decomposition. The SiO2 walls are left behind formed from the TEOS pre-

cursor via hydrolysis. The pore surface exhibits silanol (Si-O-H) groups with a

typical density of 4-5 OH/nm2. Contamination from the decomposition products

of the porogen can also be expected when annealing at temperatures below 773

K. These decomposition products are carbon based, and are mostly comprised of

methoxyl Si-O-CH3 groups.
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5.1 Positronium formation in insulators

Doppler spectroscopy of Ps emitted into vacuum

To characterise the level of collisional cooling that Ps undergoes within a material,

the kinetic energy can be measured via Doppler spectroscopy [Cassidy et al., 2010a].

Residual light from the second harmonic (532 nm) of the Nd:YAG was used to

photo-ionise Ps atoms in the n = 2 state, this scheme is shown in a simplified

manner in figure 4.4 (a). The photo ionisation process decreases fd as explained in

chapter 3. This is because a positron that is liberated from a 2p positronium atom

will be attracted back towards the target where it will likely annihilate.

Changes in the single shot lifetimes due to photo-ionisation were quantified

by the parameter Sγ , equation 3.2. For this case the background is defined as fd
when the lasers are delayed with respect to the positron pulse by 1 µs, preventing

the lasers from interacting with the Ps. Figure 5.2(a) shows Sγ plotted against the

wavelength of the UV laser for varying positron energies. Here the UV excitation

pulse is scanned over the 243 nm 1s-2p transition wavelength, whilst the ionisation

pulse remains constant at 532 nm. The data are fitted with a Gaussian function,

and the rms velocity is extracted via equation 4.1. This velocity was measured

for positronium atoms emitted into vacuum following implantation into SiO2 at

various energies. Figure 5.2(b) shows that as the implantation energy is increased,

the positronium velocity is reduced, indicating that Ps is being cooled through

collisions during its diffusion towards the sample surface.

The highest positron impact energy (4.7 kV) gives a vRMS‖ = 1.04 � 0.04 x105

m/s, whilst the lowest positron impact energy (200 V) produces faster Ps, (vRMS‖ =

2.7 � 0.2 x105 m/s). Producing cold Ps is advantageous as it is difficult to spatially

overlap a laser pulse with fast atoms without sacrificing the power density of the

laser. A source of slow Ps would be advantageous towards experiments such as

Stark deceleration of Rydberg Ps [Hogan et al., 2012].
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Positronium production and cooling

Figure 5.2: (a) Selected Doppler broadened line measurements of the 1s-2p transition in Ps,
as measured by the photo-ionisation of the n = 2 state. The positron implant-
ation energy is increased, leading to a narrowing of the line shape, due to an
increase in Ps cooling within the bulk of the SiO2 sample.(b) Ps cooling within
the bulk is further evidenced by the reduction in the velocity component that
is parallel to the direction of the lasers. [Deller et al., 2015b]

Laser enhanced positronium time of flight

An extension to these techniques enabled us to measure the emission and flight

times of Ps emitted from mesoporous SiO2 samples. By sending the lasers through

apertures and ensuring a good spatial overlap between the two beams (243 nm UV,

and 532 nm visible) which ran parallel to the target mount, we were able to define

the region in space where Ps atoms are excited and subsequently ionised. This

Ps probing scheme followed the REMPI technique [Demtröder, 2003]. The target

chamber was positioned as shown in figure 2.8 and the target mount is like that of

figure 4.2 minus the grid electrode. Positrons were bunched directly out of the trap

for this experiment. Here photoionised positrons are accelerated back to the target

by the same electric field which defined the incident beam energy. The majority

of these positrons (� 70%) promptly annihilate creating an excess of γ-rays in the

SSPALS spectra. The varying distance between the laser field and the target should

not effect the timing of detected ionisation products (positrons) as even the slowest
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5.1 Positronium formation in insulators

of these particles will reach the target within 1 ns due to the large attractive -5 kV

bias applied to the target.

Variations in the distance between the ionisation laser field and the face of the

sample in addition to variations in the laser arrival time lead to a laser-enhanced

positronium time-of-flight (LEPTOF) spectrum.

Figure 5.3 shows the excess annihilation signal caused by the laser in the form

of bumps in the SSPALS spectra. The time that the bumps appear is changed with

variations to the delay between the trap opening and the triggering of the laser.

This value is then scaled relative to the mean arrival time of the positrons at the

target.

The changes in the annihilation spectra are quantified in this case by the quant-

ity W which is measure of the excess annihilation signal induced by the laser. W is

given by,

W � rV ptqon�V ptqof f s e
t{142ns (5.2)

Where V ptq is the mean signal during a 4 ns interval which is centred at the

arrival time of the lasers. This quantity is measured when the UV wavelength

is tuned on (V ptqon) and off (V ptqof f ) resonance with the 1s-2p transition (243.0

and 242.25 nm) for background subtraction. The exponential term considers the

lifetime of o-Ps, which assumes a natural decay of 142 ns in vacuum.

The LEPTOF technique [Deller et al., 2015b] allows one to determine the arrival

time of a distribution of Ps atoms at a point in space defined by an ionising laser

field. This time is relative to the mean implantation time of the positrons into the

porous sample. This time is a convolution of the the time-width of the incident

positron pulse, the Ps velocity distribution and the range of Ps emission times from

the sample.
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Figure 5.3: Above: Normalised SSPALS integrated between -3 ns to 350 ns showing the
excess annihilations that are observed when the lasers meet the Ps atoms at
different times. The traces represent an average of around 120 shots. The
shaded regions represent the laser interaction window, which is 4 ns wide and
centred about the laser arrival time. Middle: Background subtracted data from
above. Below: o-Ps decay corrected ionisation signals as a function of laser
delay time, plotted for varying distances between the target and the laser, this
data is discussed in Deller et al. [2015b], figure from Cooper et al. [2015].
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5.1 Positronium formation in insulators

The data is therefore corrected to account for the slower atoms which transverse

the laser field for longer and are therefore able to be photoionised over a broader

timescale which leads to over counting to a degree inversely proportional to the

speed of the atoms. To account for this, a correction function of t�1 was applied

to the the data. The distributions were also truncated to a minimum time related

to the maximum expected kinetic energy of 1.1 eV [Crivelli et al., 2010], for each

distance. In addition to this, the probability for interaction with the laser is also

considered. This probability varies as a function of the speed of the atoms but is

considered to be close to one for this combination of lasers for velocities less than

around 300 km s�1. The calculation is discussed in detail in [Deller et al., 2015b]

For the data shown here, the implantation bias was fixed at 5 kV which produced

atoms with a mean rms velocity component through the path of the lasers of around

100 km/s. This velocity is increased at lower implantation energies as shown in the

previous section.

The corrected data, which is shown in the bottom panel of figure 5.3 can be

fit with an asymmetric double sigmoid function which is not based on a physical

model, its selection is due to a good fit to the data. One can determine the mean

flight time of the Ps atoms from the expectation value of the corrected fits. Extra-

polation of the to the origin, or point of Ps emission gives the mean emission time

of Ps atoms for the sample. For 5 keV positrons the implantation, diffusion and

emission process is complete in around 10 ns.

Utilisation of the LEPTOF technique provides a measurement of the Ps arrival

time at a point in space, the emission time from the sample, and the kinetic energy.

However, the following experiments utilise the method of Doppler spectroscopy

explained in the previous section.

Cavity induced shift of the 1s-2p line shape.

There is a great interest in the dynamics of Ps confined to small cavities as it re-

sembles the appealing thought experiment proposed by Sommerfeld and Welker

[1938], in which an atom is placed inside an impenetrable cavity. Ps is widely

73



Positronium production and cooling

used as a probe for studying nanoscale condensed matter structures as pick off
annihilation processes reduce the Ps lifetime inside a cavity. The o-Ps positron

can annihilate via a 2γ decay event with an electron of the cavity wall if a relative

singlet state is realised [Brandt et al., 1983]. This pickoff process depends on the

local electron density in the bulk around the cavity and will thus have a strong

dependence on the cavity size.

As well as sample probing and characterisation of porous materials, confined

atoms may provide opportunities for recoil and Doppler free spectroscopy [Ido

and Katori, 2003] as a result of their constrained motion. Ps confinement itself

can be characterised via spectroscopy as shifts in atomic transition wavelengths

arise following perturbations of the Ps internal wave function, with the centre

of mass (cm) motion behaving classically [Cassidy et al., 2011a]. There is also a

contribution arising from the induced potential from the o-Ps positron and the

wall electrons. The full perturbation is therefore a combined Ps centre of mass

and relative coordinate wave function. The low mass of Ps in addition to the extra

element in the perturbation leads to observed shifts that are much larger than those

that would be observed for a heavier, normal matter atom in a similar cavity. A

more complete, quantum mechanical treatment of these cavity induced effects on

Ps is offered by Brown et al. [2017] where the effective collisional radius depends

on the cm momentum.

Cassidy et al. [2011a] demonstrated both a large cavity induced shift and Dicke

line narrowing effects [Dicke, 1953] in Ps confined within a mesoporous SiO2

sample. The mean internal pore diameter of the material was � 5 nm [Crivelli

et al., 2010]. This was done via measurements of the Doppler broadened 1s-2p

line shape both in vacuum and inside the sample. The inside measurement was

conducted with the target rotated by 45o relative to the incoming positron beam,

which allowed the lasers to penetrate the sample. Here the resonant line was asym-

metric and shifted relative to the unperturbed vacuum position. The line scan

was repeated at a later laser arrival time revealing two distinct Ps populations. An

asymmetric double peak was the result of the line scan taken inside the sample.
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5.1 Positronium formation in insulators

The measurements were decomposed into the sum of two Gaussians, both shifted

from the unperturbed vacuum position.

This experiment was reproduced with a similar sample. The results, and the

target geometry for the two measurements are shown in figure 5.4. In vacuum the

measured 1p-2p line shape is centered at a mean wavelength of λ0 = 243.013 �

0.002 nm.

Figure 5.4: Above: Vacuum line scan showing the average unperturbed 1s-2p interval
centered at λ0 = 243.013 � 0.002 nm. Below: Cavity induced, and Doppler
blue shifted peaks showing Ps excitation both inside and outside the sample.
The average 1s-2p interval ∆E is larger than the unperturbed Ps. The sample
geometry is shown on the right where the target was rotated relative to the
positron beam axis.
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Positronium production and cooling

When the laser is directed into the sample however, two shifted peaks are ob-

served. The asymmetry of the two peaks confirm that the shorter wavelength

component, centered at λcavity , is from Ps excited inside the sample. If the excita-

tion was occurring in vacuum, an equal red and blue shift would be expected as the

Ps travels towards and in the direction of the laser following its reflection from the

substrate. The data was fitted with a double Gaussian, and was decomposed into

two peaks which determined λcavity = 242.954 � 0.005 nm, giving ∆ λcavity = 0.059

� 0.005 nm. The average 1s-2p interval ∆E is thus 1.24 � 0.07 meV larger than the

unperturbed interval, which is in good agreement with the previous measurements

of 1.26 � 0.06 meV by Cassidy et al. [2011a]. This result verifies consistency of the

mesoporous SiO2 samples which originate from the same source.

Increasing the pore size

Larger pores will reduce the cooling limit imposed by the confinement energy but

this is expected to be at the detriment to the Ps formation and cooling efficiency.

This has been observed in macroporous silica films with pore sizes of 32-70 nm

[Liszkay et al., 2012]. Ps is formed in the bulk material of mesoporous thin films

where typical lifetimes are sub-nanosecond [Gidley et al., 1999]. For Ps to live long

enough diffuse to the surface and be emitted into vacuum they must be formed

very close to an internal void or pore. This is more likely for materials that posses

smaller pores and are of higher porosity, as the thickness of the internal walls is

lower on average.

Figure 5.5 shows this as an increase in the delayed fraction fd , (see chapter 3)

for both increasing porosity, and pore size. The decreasing bulk volume increases

the probability of Ps formation in the vicinity of an open void. However, the meso-

porous samples discussed in previous sections produce Ps with longer lifetimes,

therefore higher fd values which go up to 33 % when the samples are heated (see

figure 6.10). The mesoporous samples have a mean pore size of 5 nm and a 60 %

porosity, and this provides a higher probability for Ps to enter the interconnected

pore network (see figure 5.1) where the Ps lifetime is extended.
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Figure 5.5: (a): Lifetime spectra of positrons implanted at 3 kV into various porosity
samples with pores of a mean diameter = 32nm. (b): fd with increasing porosity,
the error bars are smaller than the points. (c) Lifetime spectra of 40% porosity
samples with three pore sizes. (d) fd with increasing pore size.
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Long term confinement of Ps

For targets with large pores and low porosity we observe long term confinement

of ground state Ps. This is due to Ps becoming confined within the voids that are

isolated. Only the Ps atoms that are formed on the surface of these samples are able

to interact with the lasers in vacuum. This is shown explicitly in figure 5.6 as there

is a depletion of signal in the 1s-2p line scan as the target bias is increased. This

is due to the surface formation fraction decreasing as the positrons are implanted

deeper into the sample.

Figure 5.6: Depletion of the 1s-2p-ionisation signal (Sγ ) as the implantation energy is in-
creased for a low porosity macroporous sample.

The excitation laser can be directed into the sample following the geometry

show in figure 5.4. This allows interrogation of atoms that have been spatially

confined. Pulses fixed at 243 nm irradiated the sample at a range of times after

positron implantation.
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Figure 5.7: Above: Averaged SSPALS data with excess annihilation signals induced by the
laser. Below: Background subtraction of the data in above. Inset: The linearised
peak amplitudes plotted on the log scale to extract the confined Ps lifetime
which is measured as 91 � 8 ns.
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Figure 5.7 shows excess annihilation signals as the laser arrival is delayed in

steps of 10 ns relative to positron implantation. The mean amplitudes of the excess

peaks in the background subtracted trace (lower figure) averaged over 300 shots

were plotted on the loge scale and fitted linearly and this is shown in the inserted

figure. This was done to estimate the o-Ps lifetime within the sample. All of the

points are shown in the insert whereas every other measurement is shown in the

spectra and background subtracted spectra for clarity. The long term confinement

of Ps is apparent due to excess annihilation signals at times which exceed the

measured Ps emission time in SiO2 (� 10 ns) [Deller et al., 2015b]. Ps is probed

within the material at times which are long after positron implantation. Figure 5.7

was obtained using a sample with a mean pore diameter of 32 nm and a porosity

of 40 %. The measured Ps lifetime within this sample is determined as 91 � 8 ns.

The Tao-Eldrup model [Eldrup et al., 1981; Tao, 1972] treats the cavity as an

infinite potential well where the penetration of the o-Ps wave function into the wall

boundaries give rise to the pick-off annihilation rate and hence lifetime within the

cavity. However, this model is not reliable for void sizes above 1 nm which has

led to recent modifications to the model by Wada and Hyodo [2013]. The models

predict that the o-Ps lifetime within cavities larger than � 30 nm should be close

to, if not the same as the vacuum lifetime. It is therefore unexpected to measure a

considerably shorter lifetime within a 32 nm cavity.

With the laser directed into the sample shortly after positron implantation, the

1s-2p transition wavelength was scanned to measure an excitation line shape of

the confined atoms. The technique follows that which is explained in section 5.1.1

except a second laser for photoionisation of 2p states was not required with this

sample. The optimum time of laser arrival was found via the largest excitation

signal Sγ . This provided unexpected results which are shown in figure 5.8.

The 1s-2p transition line shape taken with the laser directed into the sample

was expected to yield a Gaussian distribution centred about the mean excitation

wavelength of 243 nm. A cavity induced shift resembling the data shown in figure

5.4 was not expected in large pores. Line narrowing effects [Dicke, 1953] may be
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5.1 Positronium formation in insulators

Figure 5.8: Above: Further examples of vacuum line scans of the 1s-2p transition is Ps
formed and reflected from the surface of a macroporous silica sample. Below:
1s-2p line scan of Ps atoms confined within the sample.

resolved and it would perhaps be expected that the distribution of the Ps kinetic

energies would be narrow in the case of uniform pores. However, a very broad

range of wavelengths are able to excite Ps and the dependence on wavelength is

unclear. This unusually broad and undefined line shape in addition to the lack of

a photoionisation laser suggest that chemical quenching from an unknown origin

may be taking place. The data suggest that 2p states may be having a stronger inter-

action due to the rapid annihilation of atoms addressed by the UV laser. Ground

state atoms seem to survive in the environment for much longer as shown in figure

5.7. However, the shorter than expected lifetime of confined o-Ps may be explained

by the sample properties.

The data shown in figure 5.7 represents the first Ps lifetime measurement using

a laser as a time dependent probe of a Ps population. This technique has an ad-

vantage over positron annihilation lifetime spectroscopy (PALS) as sample specific

processes can be identified such as the apparent chemical quenching observed here.
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Transmission targets

Positronium converters that operate in reflection geometry have a disadvantage

for experiments where the emitted Ps is to be transported away from the produc-

tion region by external fields. The main challenge in using external fields is to

avoid deflection of the incoming positron beam. This has been achieved with a

reflection target using a pulsed electrostatic guide and this technique is explained

further in chapter 4 section 4.2.1. However, several steps must be taken to achieve

transportation which brings inevitable losses.

Transmission targets offer an alternative solution to this problem as the excit-

ation and subsequent transport can be performed along, and in the direction of

the positron beam axis. A production scheme where Ps is produced in transmis-

sion could enable experiments where Ps is imaged on axis, transported to a region

of trapped antiprotons, or a scattering cell to name a few examples. However,

collisional cooling within the bulk of the material as the Ps diffuses through it is

essential for efficient laser excitation and subsequent Ps lifetime extension for such

experiments. Previously, thin silver foils have been used to produce Ps in trans-

mission [Poulsen et al., 1991]. However, the foils must be heated for Ps production

which presents practical challenges.

Measurements of Ps kinetic energy and formation efficiency were performed on

thin mesostructured targets which operate in both a reflection and transmission

geometry [Andersen et al., 2015]. The materials were produced at the University of

Aarhus, Denmark by the deposition of porous silica onto 20 nm thick amorphous

carbon films via the technique of glancing angle deposition [Robbie et al., 1995].

The structure of the material is rather different to the mesoporous materials de-

scribed in the previous section. Here, the deposited film takes the form of a uniaxial

anisotropic mesostructure with columns stranding orthogonal to the surface. The

deposited material is around 1 µm thick. A scanning electron Micrograph (SEM)

image obtained using a focused ion beam of Ga� for cutting a cross section slice is

shown in figure 5.9.
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Figure 5.9: Meso-structured silica film imaged by SEM (a) in cross section and (b) from a
top view. A carbon deposited layer can be seen in (a) and is used to protect the
surface from the Ga� ion beam used to cut the cross section slice for transmis-
sion electron micrograph (TEM) imaging. TEM determines the film thickness
as � 800 nm. (c)-(f) The various orientations available with these targets which
are explained in the text. Images were produced at the University of Aarhus,
Denmark [Andersen et al., 2015].
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Figure 5.9 (c) and (d) show Ps formation in reflection geometry where both the

transverse (c) and longitudinal (d) energy of the Ps can be measured by having the

laser pass parallel, or penetrate through the thin carbon foil respectively. (d) and

(f) show the same measurement technique for positrons that penetrate the foil and

are excited following diffusion through the silica.

Ps formed within the bulk of the silica are able to diffuse through and undergo

collisions with the walls of the columns. The column wall spacing is � 100 nm

which presents a larger, more open structure to the samples described in the previ-

ous section. It is therefore expected that a similar confinement limit on the cooling

of Ps would not be imposed with these materials and it is the film thickness that

sets the minimum achievable Ps energy. However, due to the column spacing being

large, there is a limited number of collisions with the walls as Ps passes through

the sample, resulting in fast Ps.

In reflection geometry, both the transverse and longitudinal kinetic energy were

measured via Doppler spectroscopy of the 1s-2p line shape. Figure 5.10 shows

results of the both the transverse and longitudinal measurements, where the excit-

ation scheme followed the geometry of figure 5.9 (c) and (d) respectively. The data

shows the kinetic energy of Ps. In the transverse measurement this is obtained from

fitting 1s-2p line scans and extracting the RMS velocity (equation 4.1). The kinetic

energy is then found via the classical expression Ex = 1{2 mpspvRMSq2, where x

refers to the transverse direction. The longitudinal energy was estimated via the

Doppler blue-shift, as the Ps traveled towards the laser.

In the reflection geometry, the targets show some Ps cooling as the implantation

energy is increased. However, the highest implantation energy gives rise to emitted

Ps with � 200 meV of energy in both the transverse and longitudinal direction.

The required implantation depth for Ps to loose all of its energy through collisions

is longer than the sample thickness [Andersen et al., 2015], this sets a minimum

achievable energy that is higher than that of the mesoporous structures described

in the previous section, where the lowest Ps kinetic energy achieved in this study

was � 60 meV, see section 5.1.1.
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5.1 Positronium formation in insulators

Figure 5.10: (a):The reflection-formed Ps transverse energy as extracted from the Doppler
broadening widths, and plotted as a function of positron implantation energy.
(b): The reflection-formed Ps longitudinal energy and energy width as extrac-
ted from the Doppler shifted resonances, and plotted as a function of positron
implantation energy. [Andersen et al., 2015].

In the transmission geometry (figure 5.9 (e) and (f)), positrons are implanted

into the carbon foil where they either annihilate, form Ps in reflection, or fully

penetrate through the foil where Ps formation and cooling within the silica is

possible. At lower energies Ps formation on the surface of the foil is most likely

and is was found that Ps exited on the opposite side at positron energies above

1 keV, which is shown in figure 5.11. fd is maximised between 1.4 – 2 keV. The

maximum formation fraction is obtained as the optimal trade off point between

positrons making it through the carbon foil and positrons being implanted not too

far into the silica columns.

In a similar fashion to the reflection geometry, the Ps kinetic energy was meas-

ured in transmission and the data is shown in figure 5.12. For the transverse meas-

urement, the kinetic energy was extracted from a double peak resonance structure

as a result of � 90% of the UV light reflecting back from the target and initiating a

second, red-shifted transition and is explained further in Andersen et al. [2015].

The data show some Ps cooling via collisions as Ps diffuses through the pillars.

However, the Ps emitted from these samples is quite hot, � 200 meV in both
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Figure 5.11: Ps formation efficiency in transmission geometry. The delayed fraction ob-
served at low positron impact energy (0.8 keV) is attributed to Ps reflected
from the carbon foil, whereas at higher energies the positrons can penetrate
the carbon foil and form Ps in the meso-structured silica. Positioned in front
of (behind) the target, the PbWO4 and PMT more efficiently detect the annihil-
ation of reflected (transmitted) Ps, as these are moving towards it. [Andersen
et al., 2015].

Figure 5.12: (a): The transmission-formed Ps transverse energy as extracted from the Dop-
pler broadening widths, and plotted as a function of positron implantation
energy. (b): The transmission-formed Ps longitudinal energy and energy width
as extracted from Doppler shifted double peak resonance structures, and plot-
ted as a function of positron implantation energy [Andersen et al., 2015].
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transmission and reflection geometries. The similarities between the minimum

kinetic energies observed in both geometries support the idea that positrons are

stopping deep into the silica structure near the foil, either through penetration

through the foil in the transmission geometry, or through the deep implantation

through the silica in the opposite direction. This enables the maximum diffusion

length through the material providing the highest possible number of collisions.

Improvements in this type of material for Ps cooling and emission could be realised

with thinner foils as to decrease the required energy for penetration through to the

transmission side. Also, narrower channels packed closer together would increase

the overall Ps formation probability as Ps would be more likely to enter the open

areas following formation in the bulk material. Narrower channels would also

facilitate more collisional cooling which would be more forward directed upon

emission into vacuum. This would be especially useful for an increased overlap

with a laser and if the Ps is to be transported elsewhere following emission.

5.1.2 Magnesium oxide

Observations of Ps emitted from a layer of MgO were first made by Paulin and

Ambrosino [1968]. Later Curry and Schawlow [1971] deposited MgO on the back

side of a thin gold foil such that the Ps converter was operating in a transmission

geometry. This followed the same geometry as the Au-MgO positron moderators

introduced by Canter et al. [1974]. Deposition of MgO was achieved by burning

a magnesium ribbon in air and collecting the oxide onto the foil directly. This

produces an extremely porous layer of very fine MgO particles arranged as cubic

crystals. Curry and Schawlow [1971] measured the kinetic energy of Ps emitted

into vacuum from MgO via a coincidence counting scheme and the energy was

determined as � 280 meV.

By burning a Mg ribbon in air and collecting the oxide onto an 10 � 10 mm

copper sheet, a Ps converter target was made. The sample was held onto the mount

in a reflection geometry and Ps formation was observed following positron bom-

bardment of the MgO deposit. Increasing the target bias results in reductions in fd
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and this may be due to positrons penetrating deep into the MgO layer where they

meet the Cu substrate and annihilate. An implantation curve is shown in figure

5.13.

Figure 5.13: Implantation energy scan for MgO deposited on untreated Cu. The value of
fd decreases with energy. The apparent plateau may indicate that positrons
are implanted deep enough to meet the Cu substrate where they are lost to
annihilation.

However, deeper implantation within the range achievable (up to 5 keV) does

not result in cooler Ps being emitted and this is shown via Doppler spectroscopy

in figure 5.14. It is assumed that positrons require very deep implantation to lose

energy through a reduced number of inelastic collisions much like that of other

oxide grains [Mills et al., 1989; Nagashima et al., 1995; Tianbao et al., 1987].

One would assume that the average void diameter in an MgO deposit is there-

fore quite large. Rao and Sunandana [2008] observed the formation of 15 - 60

nm MgO clusters via the technique of X-ray diffraction in a sample prepared with

combustion. However, there are many types of MgO deposition techniques with

varying results. A wide range of void sizes is expected for an MgO deposit which

has not been annealed into a regular crystalline structure.
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Figure 5.14: (a): 1s-2p line scans of Ps emitted from MgO at different implantation energies.
The fitted widths are also shown. (b): No statistically significant change in the
measured width indicating a lack of collisional cooling within the sample.

The data in figure 5.14 shows that no significant Ps cooling is taking place in

this material over an increased diffusion length which suggests that the mean void

size is large and Ps does not have a significant number of collisions within the

material.

To ensure Ps is formed in the deeper layers of the sample, maximising the

amount of possible collisions, a transmission target was made. This was achieved

with an MgO deposition onto a thin SiN film which was 50 nm thick. An Mg ribbon

was burnt in air and the oxide was collected onto the film in the same way as the

target with the Cu substrate. However, with this sample positrons can be made to

impinge on the SiN side such that Ps is formed at a location with a maximised MgO

volume to diffuse through before entering vacuum. This sample is geometrically

similar to the samples described in the previous section (see figure 5.9).

With the lasers passing perpendicular to the face of the MgO side of the sample,

positrons were implanted into the SiN film at varying energies. The UV laser was

tuned to excite the 1s-2p transition at 243 nm, and the IR laser was tuned to 730

nm in order to ionise atoms that had excited the MgO and been excited to the 2p

state. The background measurement for determination of Sγ values was made with

the laser arrival set to be 1 µs before the positron arrival.
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Figure 5.15: (a): Implantation energy scan for SiN-MgO target. Some Ps is reflected at low
energies, and full penetration of the SiN film is achieved at energies above �
1 kV. (b): The laser interaction signal Sγ measured following ejection of Ps
atoms on the MgO side of the sample.

The data in 5.15(a) follows a similar form to that shown in figure 5.11 and

shows that Ps can be made and reflected from the SiN surface at low energies. It

appears that virtually no Ps (an fd � 4% is typical of background levels) is made

when positrons stop within the SiN layer and fd is only recovered when positrons

are transmitted through the thin film where Ps can be formed in the deeper layers

of the MgO deposit.

The 1s-2p line shape was then measured in the transmission geometry. There

was no change to the line shapes with varying bias above the level which permitted

transmission (see figure 5.15) much in the same was as the reflection data shown

in figure 5.14. Representative line shapes for both the reflection and transmission

geometries are shown in figure 5.16. We therefore conclude that Ps does not un-

dergo any significant collisional cooling following its diffusion through MgO. This

is likely due to a large open volume.
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Figure 5.16: 1s-2p line scans for Ps formed in MgO in both a reflection and transmission
geometry. The kinetic energy in both cases is � 350 meV.

5.2 Single crystal semiconductors

Unlike the materials previously described, it is not possible for Ps to form within

the bulk of metals or semiconductors. This is due to high electron densities which

cause Ps to be unbound due to screening effects [Callaway, 1959]. Ps can only be

formed on the surface. The positron can either pick up an electron following its

reflection from the sample, which can result in a broad range of Ps kinetic energies,

or form when a positron resides in a shallow surface potential well which is induced

by its own image charge. Ps is then formed if an e� and e� are emitted into vacuum

together via a spontaneous, thermally activated process. The rate of this type of Ps

emission is governed by the material specific activation energy, the surface sticking

coefficient, and the temperature of the sample [Chu et al., 1981]. The efficiency of

this emission process therefore improves when the sample is heated above room

temperature [Mills and Pfeiffer, 1979].

Semiconductors can also exhibit the production of Ps via an excitonlike surface

state [Cassidy et al., 2011b,d]. The surface states are similar to the surface exciton

observed by Weinelt et al. [2004]. To produce Ps, an electron binds to a hole in
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the surface band forming a surface exciton denoted as X, which can be activated

thermally. If positrons are present, the electrons can instead form Positronium, in

a state denoted PsX [Cassidy et al., 2011c]. The Ps formation efficiency via this pro-

cess therefore depends on the sample temperature. Alternatively, the electron X

states can be populated optically. PsX can therefore be produced in a non thermal

process referred to as photoemission [Cassidy et al., 2011c]. This opens the pos-

sibilities for efficient Ps production at low temperatures, a prerequisite for many

advanced experiments.

We have observed both the spontaneous thermal activation of PsX, and a PsX

emission enhanced by the presence of photons on P-type, Ga doped Ge(100) single

crystals. The manufacturer stated resistivity of the samples was 0.019 - 0.024 Ω.

cm. n-type, Sb doped samples with higher resistivities of 0.01 - 0.1 Ω. cm were also

used briefly and it was found that the p-type single crystals were more efficient in

Ps production via photoemission, a result consistent with previous studies on Si

[Cassidy et al., 2011d].

5.2.1 Sample preparation

10 mm2 single crystal Ge samples were used in this study. Ge sample preparation

requires an acid (HCl, 32%) for etching. The Ge sample preparation methodology

was based upon the procedure outlined by Cassidy et al. [2011b] and is as follows:

Dust is removed from the Ge single crystals with directed N2 gas. The sample

was then immersed in distilled water for around one minute in order to dissolve

the native oxide layer. The sample was immediately transferred into 32 % HCl

acid for 3.5 minutes for etching. Evidence of the removal of the oxide layer was

found in a test sample which became hydrophobic following this procedure. The

samples were then dried with N2 gas and attached to the cold-head mount shown in

figure 5.17. The samples were placed in vacuum within twenty minutes following

removal from the acid.
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5.2 Single crystal semiconductors

The etching process is expected to terminate Ge dangling bonds with Cl. These

bonds are detrimental to Ps production [Cassidy et al., 2011d]. The cold-head used

here had a high temperature (1000 K) interface which facilitated the removal of Cl

via thermal desorption.

High-temperature
stage

Positron	pulse

Photoemission	laser	path

UV	and	photoionisation	laser	path

Target

Heat	shield

Figure 5.17: Schematic layout of the high-temperature cold head interface and positron
beam and laser pathways. Holes are drilled in the heat shield to allow laser
access from two directions. The heat shield is grounded via the chamber,
and the target mount is biased to control the incident positron beam energy
[Cooper et al., 2016].

Electrical isolation from, but thermal contact with the target mount and the

variable-temperature interface was achieved using sapphire discs. This enabled

the positron impact energy with the target to be controlled via the sample bias.

For the high temperature interface the real range of sample temperatures was �

20-750 K. All quoted temperatures and those shown within the figures are as

measured using a Pt sensor attached to the high-temperature stage beneath the

target mount (see figure 5.17). K-type thermocouples were also used to measure

the temperature with the sample at ground potential. Early heating tests showed a

discrepancy between the thermocouple readings and those of the thermocouples.

A maximum temperature of 780 K was recorded at the target when the Pt sensor
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read 850 K. This indicated a thermal gradient between the two positions. All

temperature sensors agreed to within 5 K within the range of 27-700 K. All quoted

temperatures above this range therefore have a considerable uncertainty attached

to them. The minimum temperature attainable for this cold-head was � 15 K.

However, this was raised to around � 20 K by the laser access holes in the heat

shield, which is also the lower limit of the Pt sensor range.

Following insertion into vacuum the treated semiconductor target was moved

into the path of the pulsed positron beam and the resulting delayed fraction fd was

recorded. Initially the formation efficiency is low and this is due to the presence

of Cl terminated dangling bonds. These are removed thermally as evidenced by

an increase in fd and is shown in figure 5.18. The temperature was recorded

using a digital temperature controller connected to the k-type thermocouples and

platinum censor. Data was transferred via Ethernet cable to a server dedicated to

the recording of environmental variables and was matched to the fd data with time

stamps made at the start of each 30s acquisition. The figure shows that an increase

in fd is observed as the temperature is raised above � 700 K. Heating further

resulted in a higher Ps yield until a plateau was reached at 850 K. The temperature

reading in this high range is unreliable and the actual maximum temperature

was closer to � 750 K. A higher Ps yield remains as the sample returns back to

room temperature showing that the increase is a result of thermal desorption of

Cl. Thermal emission of PsX is relatively efficient at room temperature following

sample etching and thermal treatment as fd � 0.27.
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Figure 5.18: Thermal desorption of Cl and the resulting increase in fd , measured from p-
type single crystal Ge. The measured temperatures above 700 K are inaccurate,
as explained in the text. Each point represents the average fd value over a 30
second period [Cooper et al., 2016].

5.2.2 Laser enhanced positronium production on semiconduct-

ors

PsX emission can be greatly enhanced when the surface electron states are popu-

lated optically via a process referred to as photoemission of PsX. The photoemis-

sion process was observed with 532 nm (visible, green) laser pulses (see chapter 4)

directed into samples that had been prepared and heated as outlined in the previ-

ous section. The laser power was limited to avoid destruction of the samples. The

maximum fluence used for these tests was 50 mJ cm�2. The significant increase in

the PsX formation efficiency with photoemision is shown in figure 5.19. The PsX

formation enhancement is most effective when the laser arrives at around the same

time as the positron pulse. The effect is still significant when the laser arrives up

to � 5 ns before the positrons indicating the lifetime of the surface states that par-

ticipate in PsX formation. Previously with Si targets, the surface states appeared

to have longer lifetimes than those seen here with Ge. The electron surface states
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persisted for many tens of nanoseconds with p-Si(100) [Cassidy et al., 2011c].
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Figure 5.19: Time dependence of PsX photoemission from a p-type Ge(100) crystal. The
laser fluence was� 50 mJ/cm2. The solid (red) line is the positron annihilation
signal measured with a fast γ-ray detector. This signal is the convolved signals
of the prompt annihilation radiation and the� 4 ns (FWHM) detector response
[Cooper et al., 2016].

PsX formation via photoemission from single crystal Ge(100) semiconductors

offers a copious amount of Ps atoms. However, as shown in the next chapter, the

kinetic energy of the Ps emitted is relatively high (� 170 meV), which can present

some issues for further experimentation.
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Chapter 6

Formation of positronium at
cryogenic temperatures

There are some situations in which it may be necessary to produce an efficient

source of Ps in cryogenic environments. For example, an experiment in which

the effects of black-body radiation are to be minimised. Other examples include

Ps mediated antihydrogen production at low temperatures or the utilisation of

mesoporous structures that have been modified to produce cold Ps atoms [Liszkay

et al., 2012]. For antihydrogen production, it is envisaged that the charge exchange

interaction (see section 4.2.2), would be conducted within the cold bore of a super-

conducting magnet [Doser and the Aegis collaboration, 2010]. For gravitational

free-fall measurements and precision spectroscopy, long lived Rydberg states are

required which are susceptible to transitions towards the short-lived ground state

following interactions with black-body photons. These transitions can occur at

room temperature for n > 20 [Gallagher, 1994].

If the Ps is to be optically excited, then laser irradiation of Ps convertor mater-

ials at cryogenic temperatures may be unavoidable. In this case a robust material

that is immune to problems arising from laser irradiation would be required. As

explained in chapter 5 mesoporous SiO2 and single crystal semiconductors can pro-

duce Ps via non thermal processes and can therefore be expected to function at any
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temperature. How these materials function when cooled to cryogenic temperatures

and when irradiated with laser light is explored in this chapter. This work has been

published by Cooper et al. [2016].

Porous structured materials (chapter 5) which produce Ps at low temperatures

could be useful in the first observations of a Ps Bose-Einstein condensate (BEC)

[Liang and Dermer, 1988; Platzman and Mills, 1994]. The realisation of Ps BEC

could then lead to many other observations such stimulated annihilation, and even-

tually a γ-ray laser [Avetissian et al., 2014; Bertolotti and Sibilia, 1979; Mills, 2014;

Ramaty and Jones, F.C. and McKinley, J.M.; Wang et al., 2014]. The critical temper-

ature of a BEC transition is given by

Tc � 3.3125
~2n2{3

mkb
(6.1)

where n is the Boson density. Tc is inversely proportional to the mass per Boson.

As Ps is of a very low mass, its effect on the critical temperature of a BEC transition

is quite small. In order to make a Ps BEC, a dense congregation of spin-polarised

Ps atoms must be cooled to below the BEC transition temperature for that given

density [Cassidy et al., 2010b]. The highest density of Ps observed previously is of

the order 1016 Ps cm�3 [Cassidy et al., 2012a]. With an increase in this density by

two orders of magnitude, the BEC transition temperature would be at the easily

attainable temperature of � 15 K. The BEC transition temperature could be raised

further if Ps cooling rates are able to be increased within engineered structures that

facilitate a combination of both collisional, and laser cooling where a collection

of Ps atoms settle within a central void [He et al., 2012; Morandi et al., 2014]. A

combination of both collisional and laser cooling techniques may be required to

reach the lowest temperature allowed by the cavity [Mills, 2010]. For example, if

Ps could be laser cooled to the recoil limit (� 1 K, which is higher than the � 1 mK

Doppler limit due to the low mass of Ps) then a BEC transition would occur at a

density closer to what has already been observed.
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It is therefore important to develop an understanding of what happens to Ps

converter materials over a range of temperatures and when irradiated with lasers.

6.1 Cooling samples to cryogenic temperatures

Positronium converter materials were mounted on closed-cycle helium refrigerat-

ors which operate according to the Gifford-McMahon principle [McMahon and

Gifford, 1960]. Two were used over the course of this study. One of them had a

1000 K high-temperature interface, as shown in figure 5.17.

The second cold head was similar except it did not have a high temperature

interface and there are some minor differences in the heat shield geometry. The

principle of cryogenic pumping is that gasses such as water vapour, oils and others

are frozen onto a cold body which in turn reduces the pressure in the open area

of the vacuum chamber. Gas molecules are held onto the cold surface via Van der

Waals forces.

As Ps thermalisation within a porous structure relies on many hundreds of

thousand collisions with the internal walls [Ford et al., 1976; Gidley et al., 1999], the

lifetime of Ps within these structures is heavily dependent of the surface conditions

of the samples. This is even more critical for materials where the Ps formation is

exclusively on the sample surface. Cooling positronium converters makes them

susceptible to the absorption of background gasses.

Using the beam line arrangement showed in figure 2.8, a cold head with a range

12 - 300 K was installed in the target chamber and the delayed fraction (fd) was

recorded as a mesoporous SiO2 sample was cooled. The region in which the target

resided had poor vacuum isolation from the buffer gas trap. The pressure here,

as measured by an ion gauge near the cold head was � 2 � 10 �6 mbar during

normal trap operation. Under these conditions, the amount of Ps detected was

inhibited rapidly after cooling to low temperatures and is shown in figure 6.1. The

trap was run at 1 Hz and each data point represents the average of 20 shots. The

temperature curve represents an interpolation between readings taken at 3 second

99



Formation of positronium at cryogenic temperatures

intervals following the same method described in section 5.2.2. All data is mapped

together offline using the time stamp associated with the initial data points.
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Figure 6.1: Delayed fraction (fd) from cooled mesoporous SiO2 measured near the trap
(2 � 10�6 mBar). The delayed fraction error bars (� 0.1 %) are not shown. A
rapid reduction in Ps formation is observed as the target absorbs background
gasses. [Cooper et al., 2016]

The reduction in fd is attributed to a high freezing rate of N2 and CF4 gas

from the positron trap which renders the sample useless within a matter of hours.

In some cases absorbed materials can in fact increase the cooling rate [He et al.,
2007], but more often it leads to a reduction in the amount of Ps emitted into

vacuum [Mariazzi et al., 2008; Moia et al., 2012] due to the reduced lifetime within

the material and chemical quenching. The available free volume in the sample is

reduced affecting Ps lifetimes and the emission efficiency. As the pore volume is

reduced, the rate of Ps-wall interactions increases. It is assumed that the amount

of Ps produced is not affected as this happens within the bulk of the sample. It is

therefore important to note that when speaking of the Ps formation efficiency, one

is referring to the amount of Ps that has a lifetime that is long enough for either

the diffusion and ejection into vacuum or the interaction with laser radiation, or

in some cases both. Short lived Ps, either p-Ps or o-Ps with a reduced lifetime due

to increased collisions or other quenching processes are not counted within the fd
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6.1 Cooling samples to cryogenic temperatures

values if they annihilate within the early time window (see chapter 3).

6.1.1 Reduced pressure target chamber

To improve the vacuum conditions and reduce the rate of gas absorption in cold

samples the beam-line shown in figure 2.8 was extended to accommodate differen-

tial pumping. Figure 6.2 shows the 2.5 m extension and the average pressure in

three regions during normal trap operation. The buncher described in chapter 2 is

also shown. The large eight port chamber has a cryogenic pump underneath, and

the sample cold-head was installed from above, the base pressure in this region

approaches the lower limit of the ion gauge which is attached to one of the eight

ports. The mean recorded pressure is is �3 � 10�9 mbar. The additional ports

allow an easy laser access at 45o, but due to the increased size of the chamber, the

acceptance of the γ-ray detectors was reduced which affects the signal to noise

ratio.
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Figure 6.2: Extended beamline following the trap. Tube inserts similar to those described
in chapter 2 are used with two turbo molecular pumps to achieve differential
pumping and a reduced background pressure in the target region. The UV laser
was directed both parallel and into the target depending on whether vacuum
or confined Ps was being probed respectively.
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Since the underlying production mechanism that occurs in mesoporous Ps con-

verters is non thermal, they can be expected to work with similar efficiency at any

temperature provided that the sample is not contaminated by background gas.
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Figure 6.3: (a) Delayed fraction (fd) from cooled SiO2 measured in the low-pressure (10�9

mBar) chamber. (b) Pressure in the target chamber associated with the cooling
and heating cycle of (a). [Cooper et al., 2016]

In the new location fd does decrease with time, but at a much reduced rate. The

system was left monitoring fd for just over three days and it dropped by almost 10%

per day after an initial drop of �15 %. This reduction in fd is also attributed to the

adsorption of residual gas in the system, mostly N2, CF4 and, some H2O. Whilst

the gas is having a detrimental effect to the target, a sufficient source of usable

Ps remains for several days which is enough time to perform many experiments.

The room temperature fd can also be recovered without venting to atmospheric

pressure as the gasses can be desorbed thermally. The recovery and subsequent

structure observed in the warm up curve is attributed to the desorption of gases at

different temperatures, as evidenced by the fluctuations in the chamber pressure.

A short investigation into whether the 523 nm laser could remove absorbed

matter via an ablation process was undertaken and some evidence for this was
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found. However, to see a significant cleaning effect via heat transfer and desorption

induced by the laser, the 532 nm fluence had to exceed 50 mJ cm�1. Visible burn

patterns on the samples were previously observed at fluences slightly above this. It

was therefore postulated that the sample morphology would be irreversibly altered

with this process and that regular resistive heating was a much less damaging

option.

Figure 6.4: Irradiation of a cold, contaminated sample with 532 nm pulses of fluence = 50
mJ cm�1. An ablation based cleaning is observed as evidenced by the increase
in fd and the spikes in pressure characteristic of desorbed material.

Figure 6.4 shows the cleaning effect via irradiation of the target with 532 nm

pulses and the resulting increase in fd and pressure at the time of laser arrival.

It was confirmed that gas adsorption was the primary mechanism for the reduc-

tion in fd as the target was cooled down and left cold for a long time with the gas

flow to the trap cut off. Regardless of how long the sample is cold for, the target

starts at the same fd when the trap is finally turned on suggesting that the sample

does not undergo significant thermal contraction.

Positron beam impact has itself shown a detrimental effect to Ps converter mater-

ials at low temperatures previously [Cassidy and Mills, 2007d; Dauwe et al., 1996;

Djourelov et al., 2005; Saito et al., 1995]. This was not observed with mesoporous

SiO2 as the rate of fd decline did not seem to depend on the rate of positron bom-
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bardment. Figure 6.5 shows both of these tests which confirm that the reduction

in fd is mostly, if not entirely due to gas adsorption.

Figure 6.5: (a) Delayed fraction (fd) from cooled SiO2 measured as the sample is cooled(red
circles), and after a delayed opening of the trap (black squares). The early black
points show a thermal resetting of the sample before trap gas removal and
cooling. (b) Variation of positron beam frequency as fd is monitored for a
cold sample. The gradient of the fitted lines does not change in a statistically
significant way indicating that positron bombardment is not detrimental to the
sample at low temperature.

Further confirmation of the non thermal nature of Ps production and emission

by these samples was also observed via Doppler spectroscopy. In previous meas-

urements of Ps emitted from SiO2 it has been observed that the Ps kinetic energy

does not depend strongly on the temperature of the sample in the range 50 - 300 K

[Crivelli et al., 2010].

Figure 6.6 shows that we have also observed no change in the Ps kinetic energy

between 300 and 12 K via measurements of the Doppler broadened 1s-2p line-

shape.

Gaussian fitting of the Doppler broadened lines yield σ of 0.070 � 0.001 nm

and 0.069 � 0.002 nm for sample temperatures of 300 and 12 K. This corresponds

to Ps kinetic energies of around 40 meV along the direction of the laser path, which
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Figure 6.6: Doppler broadened 1s-2p line-shape measurements at 300 and 12 K. The cent-
ral wavelength (∆λ = 0) is 243.01 nm. The data are fitted to Gaussian functions
as described in chapter 4. The values of the Gaussian width (σ ) are shown in
the legend. [Cooper et al., 2016]

is parallel to the SiO2 sample surface.

6.1.2 Laser induced paramagnetic centres

It would seem unlikely that the cavity induced shift of the 1p-2p transition in Ps

would be affected by temperature as the Ps kinetic energy is not. However, thermal

contraction effects may be observed. A very different situation arose when the

excitation and ionisation lasers were directed into the target following the geometry

outlined in figure 6.2. A repeat of the cavity experiments outlined in chapter 5

was repeated at 12 K with a mesoporous sample. Observations of a cavity induced

shift was unobtainable due to the effect of the laser on the sample. Within a very

short space of time following irradiation of the target, the value of fd had reduced

significantly.

During collisions with the walls of the porous network the annihilation rate is

approximately the spin averaged decay rate weighted by the 3:1 triplet-singlet ratio
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[Gidley et al., 1999] (� 2 ns�1). The quantum mechanical version of this model

states that the spin-averaged decay rate is applied only to the portion of the wave

function that is deemed to interact with the wall which is determined empirically.

The contribution to the decay rate from Ps-wall interactions can be small in any

case, so that the total decay rate may be comparable to the vacuum rate if the pores

are large enough. However, the Ps decay rate will be increased dramatically if there

are sites within the insulator with unpaired spins [Deutsch, 1951; Ferrell, 1958].

These sites are known as paramagnetic centres and they can take many forms and

can be difficult to define and identify without employing advanced techniques

such as electron paramagnetic resonance (EPR). A combination of Ps lifetime and

EPR measurements is desirable and this has been done in previous experiments

involving bulk oxide grains [Saito and Hyodo, 1999]. However, these techniques

have not been used together with thin films and could lead to insights into laser

induced surface reactions and identification of the exact types of paramagnetic

centres produced in these materials. With this knowledge it may be possible to

engineer new Ps converters that are less susceptible to laser induced issues at low

temperatures.

The presence of an unpaired spin allows o-Ps to undergo a spin exchange

quenching process, namely the conversion to the short lived p-Ps state. Just like the

gas adsorption problems described in the last section, it is thought that the laser

does not effect the amount of Ps produced, it merely effects the mean lifetime of Ps

whilst inside the porous network.

Some types of paramagnetic centres have been defined in various materials and

their effects on Ps have been studied [Dauwe and Mbungu-Tsumbu, 1992; Lazzarini

and Lazzarini, 2001; Saito et al., 1995; Saito and Hyodo, 1999; Zhang et al., 2010].

In general the majority of paramagnetic centres are unstable at room temperature.

They may be formed, but thermal fluctuations at room temperature or above cause

the rapid recombination of unpaired spins which suppresses spin exchange quench-

ing. At low temperatures it is the recombination which is suppressed leading to

long term stability of the paramagnetic centres and enhanced Ps quenching.
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Saito et al. [1995] and Saito and Hyodo [1999] showed that paramagnetic centres

produced at low temperatures by a UV lamp had a detrimental affect on the life-

time of Ps atoms produced in silica aerogel and fine oxide grains. The UV laser

was responsible for the production of paramagnetic centres in our case following

irradiation of mesoporous SiO2 with laser light.

Positron irradiation is itself able to generate paramagnetic centers in some ma-

terials [Cassidy and Mills, 2007d; Dauwe et al., 1996; Djourelov et al., 2005; Saito

et al., 1995], but this was not observed here with mesoporous SiO2 as shown in 6.5

(b). Figure 6.7 shows that irradiation with UV photons at low temperature is far

more efficient in paramagnetic centre production as evidenced by the reduction in

fd . The apparent lack of this type of radiation induced damage may be due to a

slight variation in the sample morphology and considerably less positrons to that

used by Cassidy and Mills [2007d].

Figure 6.7: (a):Ps formation at 300 and 12 K with and without UV laser irradiation.(b):
Long term stability of laser induced paramagnetic centres at 12 K. [Cooper
et al., 2016].

Figure 6.7 (a) shows a significant reduction in fd during the irradiation of an

SiO2 sample cooled to 12 K with 10 Hz UV laser pulses. At 300 K there is no

observable effect from the laser which is why the cavity induced shift of the 1s-2p

line-shape is observable at this temperature.
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Long term stability of these o-Ps quenching paramagnetic centres was observed

as no recovery of fd was found post irradiation at 12 K. We conclude that the laser

induced paramagnetic centers observed here have extremely long recombination

times as there was virtually no recovery of fd when the sample was left at 12 K

overnight. Figure 6.7(b) shows the rapid decline of fd during the first � 30 mins

(laser on), followed by a low and stable fd value for the hours that followed.

Figure 6.8: fd as a function of temperature for an SiO2 sample irradiated with UV light
pulses at 10 Hz. The period of active laser irradiation is indicated by the vertical
bars [Cooper et al., 2016].

It was not until the temperature was raised that an increase in fd could be ob-

served. fd could be completely recovered to its pre-cooling and pre-laser value by

warming the sample back to room temperature which is consistent with thermally

induced recombination of unpaired spins. Figure 6.8 shows the temperature de-

pendent recovery of fd . There appears to be a change in gradient of the recovery

curve at around 75 K which could indicate that two distinct groups of paramagnetic

centre are present.

If a single type of paramagnetic center which has a well-defined activation

energy were present then we might expect to see threshold like behaviour in the

recovery, i.e. a mass recombination of unpaired spins leading to a rapid recovery

of fd . However, the data suggests that it is more likely that there are many different
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6.1 Cooling samples to cryogenic temperatures

local environments, or types of paramagnetic center present, perhaps all falling into

one of two subgroups and that the activation energies for thermal recombination

are spread out across a broad range.

In the experiments of Saito and Hyodo [1999], radiation induced effects on Ps

lifetimes were not observed in silica powder or silica aerogel that had been heat

treated to 1073 K. This was attributed to the formation of -OCH2 radicals, which

were identified via electron spin resonance measurements and perhaps a similar

heating process could also eliminate the production of paramagnetic centres in the

mesoporous SiO2 samples used here.

Warming these samples to temperatures in excess of 600 K would likely risk the

sample integrity and our high temperature interface does not cover the same range

of temperatures used by Saito and Hyodo [1999]. It was therefore not possible to

check if warming the the targets to similar temperatures would reduce or prevent

the radiation-induced effects. However, some heating was done and an increase in

fd was observed in samples heated up to 600 K. Figure 6.9 shows the improvement

remaining as the sample returned back to room temperature much like that ob-

served in Ge(100) single crystals (see chapter 5 figure 5.18). The desorbed material

in this case being mostly H2O from sample exposure to air during preparation and

background gasses within the vacuum system.

Similar benefits were observed with SiO2 samples heated to � 400oC in a tube

furnace just prior to insertion into the vacuum chamber. However, this method

leaves the sample susceptible to the re absorption of H2O and other gasses. These

risks are removed when heating in situ. The heated sample returns to room tem-

perature with only a slight reduction in fd from the maximum (600 K) value. This

rules out an effect due to thermal desorption of Ps from surface states, which have

been observed previously in both quartz targets [Sferlazzo et al., 1987] and in silica

films [Cassidy and Mills, 2008].

When the heated sample was cooled to 27 K and irradiated again, a reduction

in fd was reproduced, as shown in figure 6.10(a). However, fd did not saturate at

the same level as the first irradiation, which was done prior to heating, but this is
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Figure 6.9: (a) Delayed fraction (fd) (filled circles) measured as a function of temperature
for an SiO2 sample as it is heated. Each point represents the average fd value
over a 30 second period.

Figure 6.10: (a) Effect of cooling and laser irradiation on the delayed fraction, and (b) laser
irradiation at room temperature following heating to � 600 K. The sample
temperature is indicated by the solid (red) lines.
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expected to decline with time. Any benefits obtained from heating do not appear

to persist in cryogenic environments, but they can be recovered if the sample is

again warmed up to � 600 K, as shown in figure 6.10(a) and (b).

Interestingly after a heating and cooling cycle, the SiO2 sample was susceptible

to a laser-induced reduction in the Ps yield at room temperature as shown in figure

6.10 (b) which strongly suggests that the laser produces paramagnetic centers that

have a stability dependent on the sample temperature. Irradiation following this

cycle did not reduce fd to the minimum value observed following the irradiations

before heating was done, but did reduce it towards the preheated value. This

suggests that some of the improvement in fd may have been due to desorption

of material, or possibly that the stable paramagnetic centers are more difficult to

populate without a heating cycle. If paramagnetic centres were present at room

temperature prior to heating and their population was saturated then one would

not expect any additional effect from the laser. This was observed in figure 6.7.

However, these centres can be repopulated with the laser at room temperature if

they have been thermally recombined prior to irradiation.

Improvements in the Ps yield due to heating is likely a combination of both

the desorption of material and the thermal recombination of paramagnetic centres

that are stable at room temperature, this is evidenced by the data in figures 6.9 and

6.10.

Depth profiling of irradiated samples

Measurements of fd as a function of implantation at different sample temperatures

are shown in figure 6.11. Without prior laser irradiation (figure 6.11(a)) it is ex-

pected that a decrease in fd should be observed at higher implantation energies as

the Ps must diffuse further through the sample which will reduce the Ps lifetime.

However, with these samples we expect only a negligible decline for implantation

energies of 3 keV, in accord with previous measurements [Crivelli et al., 2010].

There is in fact a small increase in fd as the implantation energy is raised and it

is assumed that the detection efficiency of γ-rays for the detectors described in
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chapter 3 is higher for slower atoms as fast Ps is able to move away from the detect-

ors [Andersen et al., 2015]. An alternative, explanation for the reduced fd at lower

beam energies could be due to the production of some paramagnetic centres in-

duced by low energy positrons. If such paramagnetic centres were being produced

the lifetime of these sites would be very short as no lasting reductions are observed

following low energy positron bombardment of these samples.

The mean implantation depth is indicated on the top axis and was estimated

using a Makhov type profile [Mills and Wilson, 1982],

z �
A
ρ
Eν (6.2)

where E is in keV, ν � 1.7, A 2.81 µg cm�2 [Algers et al., 2003], and ρ = 1.35 g

cm�3 is the mean density of the sample which is scaled to the sample porosity.

The target bias was varied at each of the stated temperatures in ascending order

as to minimise gas adsorption effects which were expected to be minimal during

the course of these measurements as one full sequence of voltages took 25 minutes

to complete (see figure 6.3). Following completion of the scan at the lowest temper-

ature, the target was irradiated as described in the previous section. This was done

until the reduction in fd reached saturation. The bias scans were repeated as the

temperature was raised (6.11(b)). These measurements indicate the location of the

laser induced paramagnetic centers as Ps formation occurs at a depth determined

by the incident positron beam energy and implantation profile [Algers et al., 2003;

Mills and Wilson, 1982; Schultz and Lynn, 1988].

Below 250 K there is an energy-dependent reduction in fd , in agreement with

the model of temperature stabilised paramagnetic centers. Ps atoms diffuse further

though the distribution of potential quenching sites which increases the probab-

ility of spin exchange quenching. At temperatures above 250 K no such energy

dependent reductions are observed as the majority of the unpaired spins have re-

combined. The curves start to resemble those of 6.11(a) where there was no prior

laser irradiation. At temperatures above 250 K it is assumed that the laser would
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Figure 6.11: fd versus target bias at various temperatures for a SiO2 sample without (a) and
with (b) prior UV laser irradiation. The top axis indicates the mean implanta-
tion depth of the positrons. The irradiation and heating sequence is explained
in the text. Error bars are not shown in (b) but are a similar size to those in (a)
[Cooper et al., 2016].
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not be effective in producing stable paramagnetic centers as it would seem that

those produced with this form of radiation are unstable at this temperature and

above. At lower temperatures, fd is reduced by around 50 % at higher implantation

energies. This suggests that either the paramagnetic centers that affect Ps atoms are

created predominantly in the deeper layers of the target, or that they are primarily

formed on the internal surfaces of the pores. Lifetime measurements performed on

irradiated silica powders [Saito and Hyodo, 1999] suggest that the latter is correct.

The porous films are deposited on a Si substrate. Most of the incident laser

irradiation is reflected by this substrate [Cassidy et al., 2011a]. A measurement

of the sample reflectivity was performed to verify consistency of this property of

the samples used here and ¡ 85% of the UV energy was reflected. It is therefore

assumed that laser induced paramagnetic centres are distributed throughout the

sample with uniformity. Those created in the bulk material are unlikely to effect

the Ps as it is formed within the spur electrons [Mogensen, 1974]. The idea that

Ps interacts with the paramagnetic centres that reside on the pore surfaces is re-

inforced by previous measurements where Ps was unable to escape the sample

as a surface capping layer was used [Cassidy et al., 2007]. The observed energy

dependent reduction in fd for low temperature (T   250 K) irradiated samples

is therefore consistent with the model of an increased diffusion length through

potential quenching sites. However, explanation of the apparent linearity of this

dependence with the positron implantation energy may not be so straightforward

as it may be related to the way in which confined Ps atoms move between pores

[Cassidy and Mills, 2011]. This observed linearity is broadly consistent with pre-

vious data where the emission times also appear to be linearly dependent on the

beam energy [Deller et al., 2015b]. The losses in fd associated with Ps quenching

via spin exchange with paramagentic centres can at least be partially recovered by

implantation at lower energies. However, this will produce hotter Ps as shown in

chapter 5.
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6.1 Cooling samples to cryogenic temperatures

6.1.3 Photoemission at cryogenic temperatures

The experiments outlined in previous chapters were repeated in a cryogenic envir-

onment using the Ge(100) single crystals. Preparation of Ge(100) single crystals is

outlined in chapter 5. These tests were performed exclusively in the lower pressure

chamber (6.2). As suggested earlier in this chapter, Ps converters that rely on a sur-

face based mechanism for Ps production are far more susceptible to gas absorption

effects at low temperatures. For Ge(100) single crystals the value of fd plummets

rapidly when exposed to background gas, much like the porous SiO2 samples did

in the higher pressure region (see figure 6.1). However, if a photoemission laser is

present the absorbed material is removed from the sample much more effectively

than seen in figure 6.4, and the photoemission process can be observed with high

efficiency.
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Figure 6.12: Delayed fraction (fd) measured from a p-Ge(100) single crystal as the sample
is cooled with and without 532 nm laser-induced photoemission. The laser
fluence is indicated in the legend. [Cooper et al., 2016]

Figure 6.12 shows the effects of fd for a Ge(100) sample cooled to 27 K with and

without the photoemission laser present. Without the laser, gas adsorption effects

saturate very quickly rendering the sample unusable within two hours of turning

the cold head on. Figure 6.13 shows this in terms of the SSPALS lifetime spectrum
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Figure 6.13: Single-shot lifetime spectra measured with a Ge target, with and without a
532 nm photoemission laser, at 300 K and 27 K. The dashed vertical lines
represent the time windows A, B and C. Each spectrum is the average of 100
individual shots [Cooper et al., 2016].

The fd value is at background levels a matter of minutes after the target has

reached its base temperature. This highlights the increased susceptibility for gas

adsorption problems in semiconductors compared to the mesoporous targets which

produce Ps for many days in these conditions (see figure 6.3). However, if a pho-

toemission laser is present, the PsX yield (see chapter section 5.2), and therefore

fd is increased. The efficiency and stability of PsX photoemission is increased with

higher laser fluences as shown in the figure. PsX can therefore be produced via

photoemission in cryogenic environments for at least a duration shown in the fig-

ure. However, it is unclear if these samples would also require a thermal reset after

some time like that of the mesoporous films, or if an equilibrium fd is reached

for a given fluence. The higher fluence test (40 mJ/cm�2) show longer periods of

stability suggesting that this fluence may be near the threshold value for indefinite

stability. There were no visible signs of any laser induced damage to the samples

following long periods of irradiation.

The cleaning effect is explored further in figure 6.14. Here the sample was
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Figure 6.14: Laser irradiation of a cold and contaminated Ge sample (the sample was kept
at 27 K for � 12 hours) and its effect on (fd). Different laser fluences were
tested, as indicated by the numbered regions ((i) = laser off, (ii) = 10 mJ/cm2,
(iii) = 24 mJ/cm2). The square points were recorded with the photoemission
laser temporarily blocked [Cooper et al., 2016].

left at 27 K for 12 hours which ensured complete saturation of the Ps inhibiting

effects related to gas adsorption. At the start of this test essentially no emitted Ps

is observed as typical background levels are fd � 3-4 %. When the photoemission

laser is introduced fd is recovered from � 4 to 25%, showing that the laser is

desorbing accumulated gas layers from the Ge surface. This is supported by the

spike in the chamber pressure associated with the laser light. The largest spike

appearing at around 9 minutes corresponding to much of the absorbed material

leaving the sample. Two laser fluences were used in this test and to measure what

these were, the laser had to be diverted into an energy meter. This temporary

blocking of the laser resulted in the re adsorption of background gasses resulting

in a decline in fd . The points where the laser was not present or temporarily blocked

in this way are indicated by solid black squares. Data obtained when the laser is

present is represented by filled circles. Measuring the laser fluence only takes a

couple of minutes at most. The gas adsorption effects are therefore significant on

the time scale of tens of seconds. Returning the laser restores the losses.
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Kinetic energy of PsX produced via photoemission

To assess whether or not thermal effects are present in the PsX emission process,

Doppler spectroscopy was performed at room and cryogenic temperatures, much

in the same way as explained in chapter 5. It was not expected that PsX would be

emitted from the surface of Ge(100) single crystals with a reduced kinetic energy

at lower temperatures as both Si and Ge did not exhibit this property in previous

measurements [Cassidy et al., 2011d]. In fact, this work led to the observation of

the opposite and showed a slight reduction in the PsX kinetic energy at very high

temperatures which was attributed to shifts of the surface energy levels.

Figure 6.15 shows data verifying that the energy of PsX emitted via photoe-

mission from cryogenic targets does not depend strongly on the target temperat-

ure. This was achieved by measuring the Doppler-broadened 1s-2p transition line

shapes. A second YAG laser was employed to photoionise PsX parallel with the

target face after it has been generated via photoemission with a pulse incident at

45o. No temperature dependent difference in the Ps energy was observed. The

figure shows kinetic energies of around 170 meV in the direction of the laser, for

temperatures ranging from 27-400 K.

PsX emitted from single crystal semiconductors has a broad range of energies,

as evidenced by the large Doppler broadening of the 1s-2p line shapes [Cassidy

et al., 2011d; Cooper et al., 2016]. However, the PsX kinetic energy is determined

by the surface electron and positron energy levels, so the mechanism behind the

broadening is not well understood. It is possible that the crystal surface could be

irregular such that the electron and positron surface-state energies vary from site

to site. This could contribute to variations in the emission energies. There may also

be a wide range of available surface states with different energies, which would also

lead to observations of a broad distribution of PsX energies. Other contributions

could be from thermally or optically excited surface electrons forming Ps atoms

before thermalising. This may be unlikely however given the relevant electronic

relaxation rates are in general very rapid [Ichibayashi and Tanimura, 2009; Sjodin

et al., 1998]. Thermally generated surface interactions (e.g., phonon scattering)
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Figure 6.15: Doppler spectroscopy of Ps emitted from single crystal Ge(100). (a) Doppler
broadened line-shapes measured at 400 K and 100 K. (b) Values of σ obtained
from linewidth measurements conducted at different sample temperatures.
The gray band indicates the mean value of σ � 1 standard deviation (0.140 �
0.015 nm), and the corresponding RMS velocities. The positron beam energy
was 0.65 keV for the data shown in (a) and 0.5 keV for the data in (b) [Cooper
et al., 2016].
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could also play a part in the broadening but as figure 6.15 shows, thermally gener-

ated interactions cannot be playing a significant role as the broadening persists in

cryogenic environments. Whilst these crystals are taken close to the annealing tem-

perature during the Cl desorption routine, it may be beneficial to implement more

stringent surface preparation protocols such as ion sputtering and high temperat-

ure annealing. Auger spectroscopy of these samples did show that the desorption

of Cl had been successful, but it was not clear if the crystal displayed long range

ordering.

It would seem that the PsX formation process via photoemission discussed

here for Ge(100) may be observed in any other indirect band-gap semiconductor

with dangling-bond states. Perhaps an alternative material exists that has intrinsic

energy levels lower than those of Ge or Si, it may provide an efficient source of

cold Ps atoms that can be used in cryogenic environments. As explained in chapter

4, overlapping a laser with Doppler broadened transitions in Ps is currently the

limiting factor in the efficiency of such excitation schemes. It would therefore be

extremely beneficial to find a source of cold Ps atoms for any experiments involving

Ps laser excitation. It is possible to increase the laser bandwidth as discussed in

chapter 4 but improving the spectral overlap of an excitation laser with a given Ps

transition by reducing Doppler broadening is preferable because considerably less

power is required, and more accurate state selection becomes possible [Wall et al.,
2015]. In addition, broadening due to shorter transit-times and 2nd order Doppler

shifts are reduced if colder atoms are used.

The field of Ps physics can progress rapidly once a source of efficiently produced,

low-energy Ps atom is realised. Cold Ps atoms would have many uses such as Ps

Stark deceleration [Cassidy and Hogan, 2014], Ps mediated antihydrogen formation

[Humberston et al., 1987; Kadyrov et al., 2015], Ps-atom scattering measurements

[Brawley et al., 2015], precision 13S1 Ñ 23S1 optical spectroscopy [Fee et al., 1993],

and microwave spectroscopy of the Ps fine structure [Hagena et al., 1993; Hatamian

et al., 1987; Mills et al., 1975]. The work in this chapter has highlighted two

materials that produce Ps reliably in cryogenic environments. In both cases, gas

120



6.1 Cooling samples to cryogenic temperatures

adsorption effects can be extremely inhibiting, but these effects can be managed. In

the case of mesoporous SiO2 these effects can be mitigated with good initial vacuum

conditions and regular thermal desorption of frozen gasses. Ps that is emitted from

these samples can be cooled via collisions but the level of thermalisation is set by

quantum confinement, not the sample temperature. These materials are highly

susceptible to laser induced paramagnetic centres at low temperatures so direct

contact with the laser should be avoided. In contrast, PsX emission from Ge(100)

single crystals requires the presence of a laser for sample cleaning and population

of electronic surface states which enhances the Ps yield. However, the PsX kinetic

energy is much higher than desired. It is therefore concluded that the modification

of existing converter materials produce cold Ps reliably at cryogenic temperatures

is a promising approach to achieving these goals. Such a material will be robust

enough to not be affected by laser irradiation at cryogenic temperatures. Also, it

would either facilitate collisional cooling or a low energy PsX emission process

with a narrow spread. Similarly, such a material may also find applications in the

production of cold confined Ps, leading to studies of Ps-wall interactions [Cassidy

et al., 2011a], Ps laser cooling [Liang and Dermer, 1988] and the eventual formation

of a Ps BEC [Platzman and Mills, 1994].
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Chapter 7

Review and conclusions

The early chapters provide a detailed overview of the the experimental apparatus

and its operation. Through the mastery of this system I have gained many skills

such as the preparation of ultra-high-vacuum, radiation detection, and instrument

control and automation. I am extremely fortunate to have been a part of this project

from the beginning.

Chapter 4 described the laser system and some of the techniques and applica-

tions of Ps laser spectroscopy. These include the Doppler broadened 1s-2p trans-

ition as a tool for the determination of the Ps kinetic energy. The LEPTOF technique

was also described, along with the two-step excitation scheme to Rydberg-Stark

states, and the electrostatic guiding of low field seeking k-states. These techniques

pave the way for the realisation of schemes in which atom optics techniques are

employed to manipulate Ps atoms for advanced experiments such as a gravity meas-

urement [Cassidy and Hogan, 2014; Mills and Leventhal, 2002].

Chapter 5 presents a survey on the Ps formation and cooling properties of

a few materials. The mesoporous SiO2 films [Fischer et al., 2005; Gidley et al.,
1999; Liszkay et al., 2008b] are extremely good materials for efficient Ps production.

These materials have a high enough porosity (� 50%) to exhibit interconnected

voids which enable a route for Ps to exit the sample for experimentation in vacuum.

The high porosity also increases the positron to long lived Ps (o-Ps) conversion
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efficiency as Ps is more likely to diffuse into an open area following its formation

in the bulk. The most efficient of these materials have mean pore diameters that

are small enough (� 5nm) such that Ps undergoes many collisions on its way to

the surface where it can be emitted at reduced kinetic energies [Cassidy et al.,
2010a]. The kinetic energy of Ps emitted from these structures are close to, and

above thermal energies which is due to the limit imposed by the confinement

energy. The search for a material which produces Ps at thermal energies at high

efficiency is currently underway. This could be realised using long nano-channels

[Mariazzi et al., 2010a,b] or one of the many materials within the class of metal-

organic-frameworks [Crivelli et al., 2014]. Increasing the density of Ps formed in

solid insulators may lead to a Ps Bose-Einstein condensate being produced within

an engineered porous structure, which could be used to stimulate annihilation

radiation [Mills et al., 2004; Platzman and Mills, 1994]. One can envision a porous

network, or series of long nanochannels which lead to a large central void for the

purpose of Ps thermalisation through wall collisions and subsequent confinement

of a dense collection of Ps atoms. A Ps BEC would provide a source of coherent Ps

suitable for matter-wave interferometry [Cronin et al., 2009] and high resolution

spectroscopy. Ps formation and long term confinement in macroporous voids was

also demonstrated. By using a pulsed laser as a method of interrogation we find

that the Ps lifetime is shorter than expected for the size of the cavity and this

is perhaps due to chemical quenching. This raises the point that the standard

practices employed by Ps porosimetry and modeling are unable to detect such

processes. This work gives the first example of delayed laser excitation of Ps in

a fixed location which opens up the possibilities of producing cold confined Ps,

leading to studies of Ps-wall interactions [Cassidy et al., 2011a], Ps laser cooling

[Liang and Dermer, 1988] and perhaps the formation of a Ps BEC [Platzman and

Mills, 1994].

Chapter 6 has demonstrated measurements of Ps formation from mesoporous

SiO2 films and Ge(100) single crystals at temperatures ranging from 12-700 K.

The data show that Ps atoms can be created in cryogenic environments using both

materials. The efficiency of production at cryogenic temperatures is comparable
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to that observed at room temperature, but can be compromised by residual gas

contamination. For SiO2 films in a low pressure vacuum environment (10�9 mbar)

the Ps formation decays on a time scale of a few days. The room temperature effi-

ciency can be restored by heating the sample. However, these samples will decay

rapidly if they are directly exposed to UV laser light via the creation of paramag-

netic centers that become stable at cryogenic temperatures [Cassidy et al., 2007;

Saito and Hyodo, 1999]. Warming cold irradiated SiO2 films to room temperature

completely restores the Ps formation efficiency as the paramagentic centres are

thermally destabilised. The effects of UV light on cold SiO2 have implications for

attempts to perform laser cooling on Ps confined in cryogenic cavities. On the

contrary, PsX emission from Ge crystals is enhanced by laser irradiation, which has

been previously observed in Si [Cassidy et al., 2011c]. The photoemission process

operates at low temperatures but low temperature Ge is highly susceptible to resid-

ual gas adsorption, and Ps emission is compromised much faster than is the case

for porous SiO2 samples. However, laser light that gives rise to photoemission will

also desorb gas from a Ge surface, making it possible to produce Ps indefinitely in

a cryogenic environment using laser irradiated Ge. Further studies of Ps formation

from various semiconductors at low temperatures is desired as the kinetic energy

of the emitted Ps may be characteristic of the material, and a low energy Ps emitter

that functions in a cryogenic environment may yet to be found.
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