Levitated Quantum Nanophotonics

On Wednesday 1st November we had Professor Lukas Novotny from the Photonics Laboratory in ETH, Zürich give an insightful AMOPP seminar. His expertise spans many  areas, from optical antennas, near-field optics, nonlinear plasmonics and more. However, during his talk he focused on nanoparticle trapping and cooilng. The abstract for his talk can be found below, and he agreed to provide a copy of his slides which you can download here.


Levitated Quantum Nanophotonics
Vijay Jain [a], Martin Frimmer [a], Erik Hebestreit [a], Jan Gieseler[a], Romain Quidant [b], Christoph Dellago [c], and Lukas Novotny [a]
a) ETH Zurich, Photonics Laboratory, 8093 Zurich, Switzerland.
b) ICFO, Mediterranean Technology Park, 08860 Castelldefels, Spain.
c) University of Vienna, Faculty of Physics, 1090 Vienna, Austria.

I discuss our experiments with optically levitated nanoparticles in ultrahigh vacuum. Using active parametric feedback we cool the particle’s center-of-mass temperature to T = 100μK and reach mean quantum occupation numbers of n = 15. I show that mechanical quality factors of Q = 109 can be reached and that damping is dominated by photon recoil heating. The vacuum-trapped nanoparticle forms an ideal model system for studying non-equilibrium processes, nonlinear interactions, and ultrasmall forces.

Towards endoscopic magnetic field sensors for biomedical applications

On Wednesday 25th of October, we had our weekly AMOPP seminar by Dr. Arne Wickenbrock from the Budker Group at the Helmholtz Institute of Johannes Gutenberg-University in Mainz, Germany. His research spans a wide range of fields including dark matter and dark energy constituents (GNOMECASPEr), zero- and ultralow-field nuclear magnetic resonance (ZULF-NMR) and many more. But this time his talk was actually focused on using Nitrogen-Vacancy centers in diamond as a means of detection for small magnetic fields, in the hopes of being able to use this as a medical diagnosis technique in the near future. The abstract for his talk can be found below.


Towards endoscopic magnetic field sensors for
biomedical applications
Arne Wickenbrock1,2, Georgios Chatzidrosos1, Huijie Zheng1, Lykourgos Bougas1, Dmitry
1Johannes Gutenberg-University, Mainz, Germany,
2Helmholtz Institut Mainz, Mainz, Germany,
3Department of Physics, University of California, Berkeley, CA 94720-7300, USA
We propose and report on the progress towards a miniaturized endoscopic magnetic field sensor based on color center ensembles in diamond. The unique design of the sensor enables spatially resolved in-vivo measurements of static and oscillating magnetic fields with a broad bandwidth and high sensitivity. An endoscopic magnetometer could boost the size of magnetic signals of the heart, the brain or other organs due to the reduced distance to the underlying current densities. The high-bandwidth of the device enables spatially resolved methods for tissue discrimination such as nuclear magnetic resonance or eddy-current detection in vivo.  
An endoscopic sensor motivates two simultaneous approaches, firstly, we present a highly sensitive magnetometer that measures magnetic fields by monitoring cavity-enhanced absorption on the singlet transition of the negatively charged nitrogen-vacancy (NV) center in diamond under radio-frequency irradiation and optical pumping with a green laser. We achieve shot-noise limited performance with sensitivities better than 30 pT/Hz1/2 [1].
Secondly, the rapidly changing environment in the human body as well as exposure limits for electromagnetic radiation motivate the use of a microwave-free magnetometer. We demonstrated such a device based on a narrow magnetic feature due to the ground-state level anticrossing (GSLAC) of the NV center at a background field of 102 mT to measure magnetic fields without microwaves [2]. Additionally, we plan to combine the NV center magnetometer with a much more sensitive alkali vapor cell magnetometer to build a novel brain-machine interface at room temperature and in an unshielded environment. 
[1] G. Chatzidrosos, A. Wickenbrock, L. Bougas, N. Leefer, T. Wu, K. Jensen, Y. Dumeige, and D. Budker, Miniature cavity-enhanced diamond magnetometer, in preparation, 2017.
[2] A. Wickenbrock, H. Zheng, L. Bougas, N. Leefer, S. Afach, A. Jarmola, V. M. Acosta, and D. Budker, Microwave-free magnetometry with nitrogenvacancy centers in diamond, Applied Physics Letters 109, 053505 (2016)
[3] H. Zheng, G. Chatzidrosos, A. Wickenbrock, L. Bougas, R. Lazda, A. Berzins, F. H.Gahbauer, M. Auzinsh, R. Ferber, and D. Budker, Level anticrossing magnetometry with color centers in diamond, Proc. of SPIE Vol. 10119 101190X-1, 2017.

Taming polar molecules for quantum experiments

On Wednesday 11th of October our weekly AMOPP seminar was given by Dr. Martin Zeppenfeld from the Rempe Group at the Max Planck institute for quantum optics in Garching, Germany. His talk focused on their experiments involving the manipulation of cold polar molecules which Dr. Zeppenfeld leads. You can visit their website to find out more about their research, and the abstract for his talk is given below.


Polar molecules offer fascinating opportunities for quantum experiments at cold and ultracold temperatures. For example, chemistry at low temperatures features new possibilities such as controlling chemical reactions via electric and magnetic fields or observing reactions based on tunneling through a reaction barrier. Precision measurements on molecules provide insight into fundamental physics, allowing investigation of physics beyond the standard model. Attaining sufficient control over molecules provides opportunities for quantum simulations and quantum information processing.

In my talk I will present two aspects of our work on polar molecules. First, I will present our toolbox of techniques to produce molecule ensembles at very low temperatures. This includes centrifuge deceleration of cryogenic-buffer-gas cooled molecular beams as well as optoelectrical Sisyphus cooling of formaldehyde to sub-millikelvin temperatures. Second, I will present our progress towards quantum experiments coupling polar molecules to Rydberg atoms. As a first step, we have investigated electric field controlled collisions between polar molecules.

Optical spectroscopy for nuclear and atomic science at JYFL, Finland

On Wednesday 4th of October, we had the privilege of having Professor Iain D. Moore from the University of Jyväskylä as an invited speaker for one of our AMOPP seminars. The seminar focused mainly on the work they have been doing at the various accelerator facilities at JYFL and had a good mix of nuclear and atomic physics content.

Professor Iain D. Moore kindly agreed to provide a copy of his presentation slides which you can download here.


Optical spectroscopy for nuclear and atomic science at JYFL, Finland

Iain D. Moore, University of Jyväskylä


High-resolution optical measurements of the atomic level structure readily yield fundamental and model-independent data on nuclear ground and isomeric states, namely changes in the size and shape of the nucleus, as well as the nuclear spin and electromagnetic moments [1]. Laser spectroscopy combined with on-line isotope separators and novel ion manipulation techniques provides the only mechanism for such studies in exotic nuclear systems.

Internationally, there are a myriad of tools in use however these are traditionally variants of two main workhorses in the field – collinear laser spectroscopy and resonance ionization spectroscopy. Following a short overview of the Accelerator Laboratory at the University of Jyväskylä, I will briefly present both techniques and their use in accessing the heavy element region of the nuclear landscape which exhibits rather scarce information from optical studies. This reflects a combination of the difficulty in producing such elements (low production cross sections) and a lack of stable isotopes (thus few optical transitions available in literature). Indeed, this past year has seen a number of exciting developments including optical studies of exotic atoms produced at the level of one atom-at-a-time [2], and high-resolution spectroscopy in supersonic gas expansions [3].

Recently, we have initiated a new program on the actinide elements in collaboration with the University of Mainz. I will summarize the current status of the work which includes collinear laser spectroscopy on Pu, the heaviest element attempted with this particular technique [4]. Our focus has recently turned to the study of the lowest-lying isomeric state in the nuclear chart, 229Th.  Almost 40 years of research has been invested into efforts to observe the isomeric transition which, if found, may be directly accessed by lasers. In 2016, the community was given a tremendous boost with the unambiguous identification of the state by a group in Munich, providing a stepping stone towards a future realization of a “nuclear clock” [5].

[1] P. Campbell, I.D. Moore and M.R. Pearson, Progress in Part. and Nucl. Phys. 86 (2016) 127.

[2] M. Laataioui et al., Nature 538 (2016) 495.

[3] R. Ferrer et al., Nature Communications 8 (2017) 14520.

[4] A. Voss et al., Phys. Rev. A 95 (2017) 032506.

[5] L. von der Wense et al., Nature 533 (2016) 47.

Eberhard Widman, In-beam hyperfine spectroscopy of (anti)hydrogen


On Wednesday 22nd of February, we had the pleasure of to host Professor Eberhard Widman as one of our weekly invited speakers for AMOPP seminars.  His research in the ASACUSA (Atomic Spectroscopy And Collisions Using Slow Antiprotons) collaboration is heavily related to the kind of antimatter experiments that we do at UCL, except they deal with anti-hydrogen atoms which they produce using positrons and anti-protons from the Antiproton Decelerator (AD) at CERN. The main focus of his talk was the prospect of making measurements of the hyperfine structure of anti-hydrogen.

He kindly agreed to provide a copy of his slides, which you can download  here.


In-beam hyperfine spectroscopy of (anti)hydrogen

Prof. Dr. Eberhard Widmann, Director, Stefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences Boltzmanngasse 3, A-1090 Wien

The ground-state hyperfine structure (GS-HFS) of hydrogen is known from the hydrogen maser to relative precision of 10–12. It is of great interest to measure the same quantity for its antimatter counterpart, antihydrogen, to test the fundamental CPT symmetry, which states that all particles and antiparticles have exactly equal or exactly opposite properties. Since CPT is strictly conserved in the Standard Model of particle physics, a violation, if found, would point directly to theories behind this framework. The application of the maser technique requires the confinement of the atoms in a matter box for 1000 seconds and is currently not applicable to antihydrogen. Therefore, the ASACUSA collaboration at the Antiproton Decelerator of CERN has built a Rabi-type beam spectroscopy setup for a measurement of GS-HFS.

With the initial aim of characterizing the setup devised to measure the GS-HFS and to evaluate its potential, a beam of cold, polarized, monoatomic hydrogen was built and used together with the microwave cavity and sextupole magnet designed for the antihydrogen experiment. The (F,M)=(1,0) to (0,0) transition was measured to a precision of several ppb [1], more than a factor 10 better than in the previous measurement using a hydrogen beam. This result shows that the apparatus developed is capable of making a precise measurement of the GS-HFS of antihydrogen provided a beam of similar characteristics (velocity, polarization, quantum state) becomes available.

In a recent publication on the non-minimal Standard Model Extension (SME), describing possible violations of Lorentz and CPT invariance, Kostelecky and Vargas [2] conclude that the in-beam hyperfine measurements of hydrogen alone can be used to constrain certain coefficients of their model, which have never been measured before. The status and prospects of in-beam measurements of hydrogen and antihydrogen will be presented.

[1] M. Diermaier et al., arxiv : 1610.06392

[2] V.A. Kostelecky and A.J. Vargas, Physical Review D 92, 056002 (2015).

Sougato Bose, Probing macroscopic quantum superpositions and the quantum nature of gravity through levitated objects

20170215_160711We often have internal speakers giving talks at the Atomic, Molecular Optical and Positron Physics (AMOPP) group about their cutting-edge research. Last wednesday (15th February 2017) Professor Sugato Bose presented some of his latest results and calculations based on experiments being performed by  Professor Peter Barker’s group on macroscopic quantum behaviour.

The talk had the broad interest of the department as you can see from the fully-occupied lecture hall above,  and Professor Sugato agreed to provide a copy of his slides, which you can download here, so you may too get an insight into this topic.



Probing macroscopic quantum superpositions and the quantum nature of gravity through levitated objects

Prof. Sougato Bose, Dept of Physics & Astronomy University College London

We will discuss theoretical proposals of how quantum superpositions of distinct centre of mass states of a nano-crystal may be created and probed purely by measuring a spin embedded in the object. The idea is to use a levitated diamond with an NV centre spin. Next we will also describe how to reach conditions whereby two such masses interacting purely through gravitational interaction can become entangled. Witnessing such an entanglement experimentally is equivalent to establishing the quantum nature of the gravitational field. Time permitting, we will discuss how the violation of macro-realism can be verified for a levitated nano-object in a loop-hole free manner simply by coarse grained position measurements.

Charles W. Clark, Twisting the neutron wavefunction

charles_clarkLast Wednesday (February 8th 2016) we were lucky enough to have Charles W. Clark from the Joint Quantum Institute at NIST as an invited speaker to give a talk about “Twisting the neutron wavefunction”. The talk focused on the importance of fundamental wave theory and how the wave-particle duality of neutrons studied with interferometers (particularly on a Mach-Zehnder configuration) can provide great insight about basic optical principles being applied to matter waves, such as the addition of angular momentum to neutron wavefunctions.

The abstract for his talk can be found below, and he kindly agreed to provide a copy of his presentation slides which you can download here.

We will be updating our blog with subsequent talks from visiting speakers that may visit UCL, so stay tuned!


Twisting the neutron wavefunction

Charles W. Clark, Joint Quantum Institute, University of Maryland , USA

Wave motions in nature were known to the ancients, and their mathematical expression in physics today is essentially the same as that first provided by d’Alembert and Euler in the mid-18th century. Yet it was only in the early 1990s that physicists managed to control a basic property of light waves: their capability of swirling around their own axis of propagation. During the past decade such techniques of control have also been developed for quantum particles: atoms, electrons and neutrons. I will present a simple description of these phenomena, emphasizing the most basic aspects of wave and quantum particle motion. Neutron interferometry offers a poignant perspective on wave- particle duality: at the time one neutron is detected, the next neutron has not yet even been born. Here, indeed, each neutron “then only interferes with itself.” Yet, using macroscopically-machined objects, we are able to twist neutron deBroglie waves with sub-nanometer wavelengths.